Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultrasensitive imaging method uses gold-silver 'nanocages'

13.04.2010
New research findings suggest that an experimental ultrasensitive medical imaging technique that uses a pulsed laser and tiny metallic "nanocages" might enable both the early detection and treatment of disease.

The system works by shining near-infrared laser pulses through the skin to detect hollow nanocages and solid nanoparticles - made of an alloy of gold and silver - that are injected into the bloodstream.

Unlike previous approaches using tiny metallic nanorods and nanospheres, the new technique does not cause heat damage to tissue being imaged. Another advantage is that it does not produce a background "auto fluorescent" glow of surrounding tissues, which interferes with the imaging and reduces contrast and brightness, said Ji-Xin Cheng (pronounced Gee-Shin), an associate professor of biomedical engineering and chemistry at Purdue University.

"This lack of background fluorescence makes the images much more clear and is very important for disease detection," he said. "It allows us to clearly identify the nanocages and the tissues."

The improved performance could make possible early detection and treatment of cancer. The tiny gold-silver cages also might be used to deliver time-released anticancer drugs to diseased tissue, said Younan Xia, the James M. McKelvey Professor for Advanced Materials in the Department of Biomedical Engineering at Washington University in St. Louis. His team fabricated the nanocages and nanoparticles used in the research.

The gold-silver structures yielded images 10 times brighter than other experimental imaging research using gold nanospheres and nanorods. The imaging technology provides brightness and contrast potentially hundreds of times better than conventional fluorescent dyes used for a wide range of biological imaging to study the inner workings of cells and molecules.

Findings were detailed in a research paper published online April 6 in the journal Angewandte Chemie's international edition. The paper was written by Purdue chemistry doctoral student Ling Tong, Washington University graduate student Claire M. Cobley and research assistant professor Jingyi Chen, Xia and Cheng.

The new imaging approach uses a phenomenon called "three-photon luminescence," which provides higher contrast and brighter images than conventional fluorescence imaging methods. Normally, three-photon luminescence is too dim to be used for imaging. However, the presence of gold and silver nanoparticles enhances the brightness, overcoming this obstacle. The ultrafast laser also is thought to possibly play a role by causing "third harmonic generation," which increases the brightness.

Previous research to develop the imaging system has required the use of "plasmons," or clouds of electrons moving in unison, to enhance brightness and contrast. However, using plasmons generates tissue-damaging heat. The new technique does not use plasmon enhancement, eliminating this heating, Cheng said.

The three-photon effect might enable scientists to develop advanced "non-linear optical techniques" that provide better contrast than conventional technologies.

"The three-photon imaging capability will potentially allow us to combine imaging and therapy for better diagnosis and monitoring," Xia said.

Researchers used a laser in the near-infrared range of the spectrum pulsing at the speed of femtoseconds, or quadrillionths of a second. The laser pulses 80 million times per second to illuminate tissues and organs after nanocages have been injected, Cheng said.

The cages and particles are about 40 nanometers wide, or roughly 100 times smaller than a red blood cell.

The researchers intravenously injected the nanocages into mice and then took images of the tiny structures in tissue samples from organs such as the liver and spleen.

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>