Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New ultrasensitive electronic sensor array speeds up DNA detection

28.08.2009
Singapore scientists developed cost-effective technology for disease diagnosis and biological research

A novel electronic sensor array for more rapid, accurate and cost-efficient testing of DNA for disease diagnosis and biological research has been developed by scientists at Singapore's Institute of Bioengineering and Nanotechnology (IBN).

In a recent Journal of the American Chemical Society, IBN scientists reported that based on laboratory results, their Nanogap Sensor Array has shown "excellent" sensitivity at detecting trace amounts of DNA.

"By saving time and lowering expenses, our newly developed Nanogap Sensor Array offers a scalable and viable alternative for DNA testing," said Zhiqiang Gao, Ph.D., Group Leader at IBN, the world's first bioengineering and nanotechnology research institute.

The biosensor translates the presence of DNA into an electrical signal for computer analysis. The distinctively designed sensor chip has the ability to detect DNA more efficiently by "sandwiching" the DNA strands between the two different surfaces.

"The novel vertical nanostructure design and two different surfaces of the sensor allow ultrasensitive detection of DNA," added Dr. Gao. "This sensitivity is best-in-class among electrical DNA biosensors. The design of the sensor also took into consideration the feasibility of mass production in a cost-effective way for expanded usage."

Conventionally, human DNA is detected through the use of polymerase chain reaction (PCR), which while effective, is also expensive, cumbersome and time-consuming for widespread use. The PCR technique amplifies a single piece of DNA across several orders of magnitude, duplicating millions or more copies of a particular DNA sequence, in order to detect the genetic material more easily.

Although effective, tests involving PCR may not be optimal for situations such as a pandemic outbreak, where results are needed quickly because PCR devices tend to be bulky and costly.

The Nanogap Sensor Array has a unique, vertically aligned nanostructure design and a two-surface configuration based on electronic transduction. The sensor comes with a pair of micro-sized metal electrodes separated by a nanogap (5 - 20 nm or about 1/50,000 the width of a human hair).

Another distinctive feature of the biosensor is its ability to capture DNA strands more effectively. This is possible because the two surfaces of the sensor are coated with a chemically treated "capture probe" solution through an electrochemical technique specially developed by IBN. This allows DNA strands to "stick" more easily to the sensor, resulting in a faster and more accurate analysis.

"This new biosensor holds significant promise to speed up on-going efforts in the detection and diagnosis of debilitating diseases such as cancer, cardiovascular problems and infectious viruses. We aim to make healthcare accessible to the masses with early disease diagnosis as the critical driving force behind the research we undertake here at IBN," added Jackie Y. Ying, Ph.D., Executive Director of IBN, one of the research institutes of Singapore's Agency for Science, Technology and Research (A*STAR).

The research was published on Aug. 5, 2009, in a paper titled, "Mass-Produced Nanogap Sensor Arrays for Ultrasensitive Detection of DNA," In Journal of the American Chemical Society.

For interviews, queries and images, contact:
Elena Tan Nidyah Sani
Phone: 65 6824 7032
Phone: 65 6824 7005
Email: elenatan@ibn.a-star.edu.sg
Email: nidyah@ibn.a-star.edu.sg
Institute of Bioengineering and Nanotechnology:
The Institute of Bioengineering and Nanotechnology (IBN) was established in 2003 as a national research institute under the Agency for Science, Technology and Research, Singapore, by Executive Director, Professor Jackie Yi-Ru Ying. Prof. Ying was a Professor of Chemical Engineering at the Massachusetts Institute of Technology (1992჻). In 2008, Professor Ying was recognized as one of "One Hundred Engineers of the Modern Era" by the American Institute of Chemical Engineers for her groundbreaking work on nanostructured systems, nanoporous materials and host matrices for quantum dots and wires. Under her direction, IBN conducts research at the cutting-edge of bioengineering and nanotechnology. IBN's research programs are geared towards linking multiple disciplines across engineering, science and medicine to produce research breakthroughs that will improve healthcare and our quality of life.

IBN's research activities are focused in the following areas:

Drug and Gene Delivery, where the controlled release of therapeutics involve the use of functionalized polymers, hydrogels and biologics for targeting diseased cells and organs, and for responding to specific biological stimuli.
Cell and Tissue Engineering, where biomimicking materials, stem cell technology, microfluidic systems and bioimaging tools are combined to develop novel approaches to regenerative medicine and artificial organs.

Biosensors and Biodevices, which involve nanotechnology and microfabricated platforms for high-throughput biomarkers screening, automated biologics synthesis, and rapid disease diagnosis.

Pharmaceuticals Synthesis and Nanobiotechnology, which encompasses the efficient catalytic synthesis of chiral pharmaceuticals, and new nanocomposite materials for sustainable technology and alternative energy generation. IBN's innovative research is aimed at creating new knowledge and intellectual properties in the emerging fields of bioengineering and nanotechnology to attract top-notch researchers and business partners to Singapore. Since 2003, IBN researchers have published a total of 502 papers. IBN also plays an active role in technology transfer and spinning off companies, linking the research institute and industrial partners to other global institutions. As of June 2009, IBN has filed 714 patent applications on its inventions and the Institute is currently looking for partners for collaboration and commercialization of its portfolio of technologies. IBN's current staff strength stands at ~ 180 scientists, engineers and medical doctors. With its multinational and multidisciplinary research staff, the institute is geared towards generating new biomaterials, devices, systems, equipment and processes to boost Singapore's economy in the fast-growing biomedical sector.

IBN is also committed to nurturing young minds, and the institute acts as a training ground for PhD students and undergraduates. In October 2003, IBN initiated a Youth Research Program to open its doors to university students, as well as students and teachers from various secondary schools and junior colleges. It has since reached out to more than 31,075 students and teachers from 205 local and overseas schools and institutions.

Elena Tan | EurekAlert!
Further information:
http://www.ibn.a-star.edu.sg

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>