Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultra short telomeres linked to osteoarthritis

16.01.2012
Telomeres, the very ends of chromosomes, become shorter as we age. When a cell divides it first duplicates its DNA and, because the DNA replication machinery fails to get all the way to the end, with each successive cell division a little bit more is missed.

New research published in BioMed Central's open access journal Arthritis Research & Therapy shows that cells from osteoarthritic knees have abnormally shortened telomeres and that the percentage of cells with ultra short telomeres increases the closer to the damaged region within the joint.

While the shortening of telomeres is an unavoidable side effect of getting older, telomeres can also shorten as a result of sudden cell damage, including oxidative damage. Abnormally short telomeres have been found in some types of cancer, possibly because of the rapid cell division the cells are forced to undergo.

There has been some evidence from preliminary work done on cultured cells that the average telomere length is also reduced in osteoarthritis (OA). A team of researchers from Denmark used newly developed technology (Universal single telomere length assay) to look in detail at the telomeres of cells taken from the knees of people who had undergone joint replacement surgery. Their results showed that average telomere length was, as expected, shortened in OA, but that also 'ultra short' telomeres, thought to be due to oxidative stress, were even more strongly associated with OA.

Maria Harbo who led this research explained, "We see both a reduced mean telomere length and an increase in the number of cells with ultra short telomeres associated with increased severity of OA, proximity to the most damaged section of the joint, and with senescence. Senescence can be most simply explained as biological aging and senescent cartilage within joints is unable to repair itself properly."

She continued, "The telomere story shows us that there are, in theory, two processes going on in OA. Age-related shortening of telomeres, which leads to the inability of cells to continue dividing and so to cell senescence, and ultra short telomeres, probably caused by compression stress during use, which lead to senescence and failure of the joint to repair itself. We believe the second situation to be the most important in OA. The damaged cartilage could add to the mechanical stress within the joint and so cause a feedback cycle driving the progression of the disease."

Notes to Editors

1. The distribution pattern of critically short telomeres in human osteoarthritic knees
Maria Harbo, Laila Bendix, Anne-Christine Bay-Jensen, Jesper Graakjaer, Kent Søe, Thomas L Andersen, Per Kjaersgaard-Andersen, Steen Koelvraa and Jean-Marie Delaisse

Arthritis Research & Therapy (in press)

Please name the journal in any story you write. If you are writing for the web, please link to the article. All articles are available free of charge, according to BioMed Central's open access policy.

Article citation and URL available on request at press@biomedcentral.com on the day of publication.

2. Arthritis Research & Therapy is an international, peer-reviewed online journal, publishing original research, reviews, commentaries and reports. The major focus of the journal is on cellular and molecular mechanisms of arthritis, musculoskeletal conditions and systemic autoimmune rheumatic diseases and translation of this knowledge into advances in clinical care. Original basic, translational laboratory and clinical research is considered for publication along with results of therapeutic trials.

3. BioMed Central (http://www.biomedcentral.com/) is an STM (Science, Technology and Medicine) publisher which has pioneered the open access publishing model. All peer-reviewed research articles published by BioMed Central are made immediately and freely accessible online, and are licensed to allow redistribution and reuse. BioMed Central is part of Springer Science+Business Media, a leading global publisher in the STM sector.

Dr. Hilary Glover | EurekAlert!
Further information:
http://www.biomedcentral.com

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

Shape matters when light meets atom

05.12.2016 | Physics and Astronomy

Researchers uncover protein-based “cancer signature”

05.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>