Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultra short telomeres linked to osteoarthritis

16.01.2012
Telomeres, the very ends of chromosomes, become shorter as we age. When a cell divides it first duplicates its DNA and, because the DNA replication machinery fails to get all the way to the end, with each successive cell division a little bit more is missed.

New research published in BioMed Central's open access journal Arthritis Research & Therapy shows that cells from osteoarthritic knees have abnormally shortened telomeres and that the percentage of cells with ultra short telomeres increases the closer to the damaged region within the joint.

While the shortening of telomeres is an unavoidable side effect of getting older, telomeres can also shorten as a result of sudden cell damage, including oxidative damage. Abnormally short telomeres have been found in some types of cancer, possibly because of the rapid cell division the cells are forced to undergo.

There has been some evidence from preliminary work done on cultured cells that the average telomere length is also reduced in osteoarthritis (OA). A team of researchers from Denmark used newly developed technology (Universal single telomere length assay) to look in detail at the telomeres of cells taken from the knees of people who had undergone joint replacement surgery. Their results showed that average telomere length was, as expected, shortened in OA, but that also 'ultra short' telomeres, thought to be due to oxidative stress, were even more strongly associated with OA.

Maria Harbo who led this research explained, "We see both a reduced mean telomere length and an increase in the number of cells with ultra short telomeres associated with increased severity of OA, proximity to the most damaged section of the joint, and with senescence. Senescence can be most simply explained as biological aging and senescent cartilage within joints is unable to repair itself properly."

She continued, "The telomere story shows us that there are, in theory, two processes going on in OA. Age-related shortening of telomeres, which leads to the inability of cells to continue dividing and so to cell senescence, and ultra short telomeres, probably caused by compression stress during use, which lead to senescence and failure of the joint to repair itself. We believe the second situation to be the most important in OA. The damaged cartilage could add to the mechanical stress within the joint and so cause a feedback cycle driving the progression of the disease."

Notes to Editors

1. The distribution pattern of critically short telomeres in human osteoarthritic knees
Maria Harbo, Laila Bendix, Anne-Christine Bay-Jensen, Jesper Graakjaer, Kent Søe, Thomas L Andersen, Per Kjaersgaard-Andersen, Steen Koelvraa and Jean-Marie Delaisse

Arthritis Research & Therapy (in press)

Please name the journal in any story you write. If you are writing for the web, please link to the article. All articles are available free of charge, according to BioMed Central's open access policy.

Article citation and URL available on request at press@biomedcentral.com on the day of publication.

2. Arthritis Research & Therapy is an international, peer-reviewed online journal, publishing original research, reviews, commentaries and reports. The major focus of the journal is on cellular and molecular mechanisms of arthritis, musculoskeletal conditions and systemic autoimmune rheumatic diseases and translation of this knowledge into advances in clinical care. Original basic, translational laboratory and clinical research is considered for publication along with results of therapeutic trials.

3. BioMed Central (http://www.biomedcentral.com/) is an STM (Science, Technology and Medicine) publisher which has pioneered the open access publishing model. All peer-reviewed research articles published by BioMed Central are made immediately and freely accessible online, and are licensed to allow redistribution and reuse. BioMed Central is part of Springer Science+Business Media, a leading global publisher in the STM sector.

Dr. Hilary Glover | EurekAlert!
Further information:
http://www.biomedcentral.com

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
19.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>