Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ulcer-Causing Bacteria Baffled by Mucus

19.01.2012
Rensselaer Polytechnic Institute Engineering Researchers Discover Impact of Viscoelasticity on the Collective Behavior of Swimming Microorganisms
Even the tiniest microscopic organisms make waves when they swim. In fact, dealing with these waves is a fact of life for the ulcer-causing bacteria H. pylori.

The bacteria are known to change their behavior in order to compensate for the waves created by other bacteria swimming around in the same aquatic neighborhood. From the relatively simple actions of these individual bacteria emerges a complex, coordinated group behavior.

A new study by engineering researchers at Rensselaer Polytechnic Institute demonstrates how introducing certain polymers—like those found in human mucus and saliva—into the environment makes it significantly more difficult for H. pylori and other microorganisms to coordinate. The findings raise many new questions about the relationship between the individual and group behaviors of bacteria. The study also suggests that human mucus, saliva, and other biological fluid barriers may have evolved to disrupt the ability of harmful bacteria to coordinate.

“In the human body, microorganisms are always moving around in mucus, saliva, and other systems that exhibit elasticity due to the presence of polymers. Our study is among the first to look at how this elasticity impacts the collective behavior of microorganisms like H. pylori,” said lead researcher Patrick T. Underhill, assistant professor in the Howard P. Isermann Department of Chemical and Biological Engineering at Rensselaer. “What we found is that polymers do in fact have a substantial impact on the flows created by the swimming bacteria, which in turn makes it more difficult for the individual bacteria to coordinate with each other. This opens the door to new ways of looking at our immune system.”

Results of the study are detailed in the paper “Effect of viscoelasticity on the collective behavior of swimming microorganisms,” recently published by the journal Physical Review E. See the paper online at: http://link.aps.org/doi/10.1103/PhysRevE.84.061901

Underhill’s study, based on large-scale computer simulations, leveraged the power of the Rensselaer Computational Center for Nanotechnology Innovations (CCNI), one of the world’s most powerful university-based supercomputers. These simulations involved creating a computer model of more than 110,000 individual H. pylori bacteria simultaneously occupying a small volume of polymer-infused liquid. The simulations captured all of the individual actions and interactions created as the bacteria swam through the liquid. The most difficult aspect of this kind of simulation, Underhill said, is to identify collective behaviors and extract relevant conclusions from the massive amount of data generated.

In addition to computer simulations, Underhill employed theoretical models to understand how the addition of elasticity to liquid impacts the waves created by swimming H. pylori and, in turn, the collective behavior of a large group of the bacteria. Bacteria like H. pylori are known as pushers, as they propel themselves through water by twisting the long helical filaments that trail behind them.

Rensselaer chemical engineering graduate student Yaser Bozorgi is a co-author of the paper.

The study was funded by the National Science Foundation (NSF). In 2010, Underhill received a prestigious NSF Faculty Early Career Development Award (CAREER) to support his transport phenomena research.

For more information on Underhill’s research at Rensselaer, visit:

Faculty Home Page
http://cbe.rpi.edu/node/90
Rensselaer Professor Patrick Underhill Receives NSF CAREER Award
http://news.rpi.edu/update.do?artcenterkey=2733
Published January 18, 2012
Contact: Michael Mullaney
Phone: (518) 276-6161
E-mail: mullam@rpi.edu

Michael Mullaney | EurekAlert!
Further information:
http://www.rpi.edu
http://news.rpi.edu/update.do?artcenterkey=2976

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>