Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ulcer bacteria may contribute to development of Parkinson's disease

23.05.2011
The stomach bacteria responsible for ulcers could also play a role in the development of Parkinson's disease according to research presented today at the 111th General Meeting of the American Society for Microbiology.

"Infection of late middle-aged mice with a particular strain of the bacteria Helicobacter pylori results in development of Parkinson's disease symptoms after 3-5 months," says Traci Testerman of Louisiana State University Health Sciences Center, Shreveport, who presented the research. "Our findings suggest that H. pylori infection could play a signficant role in the development of Parkinson's disease in humans."

Physicians have noted a correlation between stomach ulcers and Parkinson's disease as far back as the 1960s, before it was even known that H. pylori was the cause of ulcers. More recently, a number of studies found that people with Parkinson's disease were more likely to be infected with the bacterium, and that Parkinson's patients who were treated and cured of infection showed slight improvement compared to controls that continued to deteriorate.

In Guam, a study of why some populations had a high risk of developing a Parkinson's-like disease discovered that a specific compound in cycad seeds eaten by these populations was neurotoxic. The compound, which resembles a cholesterol with an attached sugar group, is almost identical to a compound produced by H. pylori.

Testerman and her colleagues developed an animal model to more effectively understand the role of H. pylori and its modified cholesterol in Parkinson's disease. They infected young and aged mice with three different strains of the bacteria and monitored their locomotor activity and dopamine levels in the brain. Mice infected with one of the strains showed significant reductions in both.

"The results were far more dramatic in aged mice than in young mice, demonstrating that normal aging increases susceptibility to Parkinsonian changes in mice, as is seen in humans," says Testerman.

In order to determine whether the modified cholesterol or other substances could be responsible for Parkinson's disease development, they fed aged mice with H. pylori extracts. The mice did not become infected but developed the same symptoms as those infected with the bacteria, suggesting that the modified cholesterol or some other product contained within the bacteria contribute to disease development.

"Our mouse model demonstrates a direct effect of H. pylori infection on the development of Parkinson's disease. The observation that not all H. pylori strains are equally able to cause symptoms will allow us to investigate bacterial factors and/or immune response to H. pylori infection that increase the risk for Parkinson's disease," says Testerman.

A live interview with Traci Testerman will be webcast Sunday, May 22, 2011 at 10:00 a.m. CDT, over the ASM Live uStream channel (http://www.ustream.tv/channel/asm-live). Questions will be taken from the audience via chat room and Twitter.

Jim Sliwa | EurekAlert!
Further information:
http://www.asmusa.org

Further reports about: H. pylori Helicobacter pylori Parkinson stomach ulcer ulcer

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>