Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UI Professor Identifies Largest Known Crocodile

08.05.2012
A crocodile large enough to swallow humans once lived in East Africa, according to a University of Iowa researcher.
"It’s the largest known true crocodile,” says Christopher Brochu, associate professor of geoscience. “It may have exceeded 27 feet in length. By comparison, the largest recorded Nile crocodile was less than 21 feet, and most are much smaller.”

Brochu’s paper on the discovery of a new crocodile species was just published in the May 3 issue of the Journal of Vertebrate Paleontology. The new species lived between 2 and 4 million years ago in Kenya. It resembled its living cousin, the Nile crocodile, but was more massive.

The illustration shows the comparative sizes of ancient/modern crocodiles and ancient/modern humans. Illustration by Chris Brochu.

He recognized the new species from fossils that he examined three years ago at the National Museum of Kenya in Nairobi. Some were found at sites known for important human fossil discoveries. “It lived alongside our ancestors, and it probably ate them,” Brochu says. He explains that although the fossils contain no evidence of human/reptile encounters, crocodiles generally eat whatever they can swallow, and humans of that time period would have stood no more than four feet tall.

"We don’t actually have fossil human remains with croc bites, but the crocs were bigger than today’s crocodiles, and we were smaller, so there probably wasn’t much biting involved,” Brochu says.

He adds that there likely would have been ample opportunity for humans to encounter crocs. That’s because early man, along with other animals, would have had to seek water at rivers and lakes where crocodiles lie in wait.

Regarding the name he gave to the new species, Brochu said there was never a doubt.

The crocodile Crocodylus thorbjarnarsoni is named after John Thorbjarnarson, famed crocodile expert and Brochu’s colleague who died of malaria while in the field several years ago.

“He was a giant in the field, so it only made sense to name a giant after him,” Brochu says. “I certainly miss him, and I needed to honor him in some way. I couldn’t not do it.”

Among the skills needed for one to discover a new species of crocodile is, apparently, a keen eye.

Not that the fossilized crocodile head is small—it took four men to lift it. But other experts had seen the fossil without realizing it was a new species. Brochu points out that the Nairobi collection is “beautiful” and contains many fossils that have been incompletely studied. “So many discoveries could yet be made,” he says.

In fact, this isn’t the first time Brochu has made a discovery involving fossils from eastern Africa. In 2010, he published a paper on his finding a man-eating horned crocodile from Tanzania named Crocodylus anthropophagus—a crocodile related to his most recent discovery.

Brochu says Crocodylus thorbjarnarsoni is not directly related to the present-day Nile crocodile. This suggests that the Nile crocodile is a fairly young species and not an ancient “living fossil,” as many people believe. “We really don’t know where the Nile crocodile came from,” Brochu says, “but it only appears after some of these prehistoric giants died out.”

The work was funded in part by the National Science Foundation and the UI Obermann Center for Advanced Studies.

Gary Galluzzo | Newswise Science News
Further information:
http://www.uiowa.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>