Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UI biologist studies ocean plant cell adaptation in climate change

How will plant cells that live in the oceans and serve as the basic food supply for many of the world's sea creatures react to climate change?

A University of Iowa biologist and faculty member in the Roy J. Carver Center for Comparative Genomics and his colleagues came one step closer to answering that question in a paper published in the April 9 issue of the journal Science.

Debashish Bhattacharya, professor of biological sciences in the UI College of Liberal Arts and Sciences, is studying a tiny (about one micrometer in diameter) and diverse group of organisms called picoeukaryotes. So far, he has found that organisms from two isolated groups of the genus Micromonas -- which thrive in ecosystems ranging from tropical to polar -- look the same, but have evolved to contain different gene pools.

Bhattacharya said that understanding how these organisms change involves many issues.

The question, he said, is: "How do photosynthetic cells in the world's oceans recognize and adapt to their ever-changing environment and how will their latent abilities allow them to respond to climate change that will result in increased stratification and lower nutrient levels in the upper productive zone in oceans?

"To understand these complex issues, investigators need to generate gene catalogs from dominant plant organisms and understand how their genomes have evolved to thrive in vastly different oceanic regions ranging from near-shore to open ocean environments."

He said that the lead author of the Science article, Alexandra Z. Worden of the Monterey Bay Aquarium Research Institute and collaborators, addressed these key issues in oceanography by sequencing to completion the nuclear genome of two globally distributed, bacterial-sized green algae named Micromonas. One isolated sample (RCC299) came from tropical waters in the Pacific Ocean, whereas the other (CCMP1545) came from temperate Atlantic coastal waters off Plymouth, England.

"These picoeukaryotes are indistinguishable using cell morphology but turn out to be enormously different at the genome level," Bhattacharya said. "On average, these isolates share only 90 percent of the roughly 10,000 genes each contains, indicating they comprise distinct species. More remarkable is the finding of novel repeated sequences that have spread into genes of Atlantic sample that are completely missing in the Pacific sample."

He said that it is unclear how these ubiquitous elements originated or what their function might be in the Atlantic sample, but their presence demonstrates the distinct genomic trajectory that the two species have taken.

"Overall the genomes of these Micromonas species show clear indications of selection acting on the gene pool with each containing a set of unique genes acquired by horizontal gene transfer that are not shared with the other," he said. "These genes likely hold clues to how each species has adapted to its own specific marine environment."

"The work highlights the extent to which genomic diversity is hidden by a simple, shared morphology and points to the need to decipher gene functions in Micromonas to understand their role in adapting to regimes that define myriad marine environments," he said.

Genome sequencing was done by the U.S. Department of Energy Joint Genome Institute. Research in Bhattacharya's lab was funded by a grant from the National Science Foundation.

STORY SOURCE: University of Iowa News Services, 300 Plaza Centre One, Suite 371, Iowa City, Iowa 52242-2500

MEDIA CONTACT: Gary Galluzzo, 319-384-0009,

Gary Galluzzo | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>