Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UI biologist studies ocean plant cell adaptation in climate change

20.04.2009
How will plant cells that live in the oceans and serve as the basic food supply for many of the world's sea creatures react to climate change?

A University of Iowa biologist and faculty member in the Roy J. Carver Center for Comparative Genomics and his colleagues came one step closer to answering that question in a paper published in the April 9 issue of the journal Science.

Debashish Bhattacharya, professor of biological sciences in the UI College of Liberal Arts and Sciences, is studying a tiny (about one micrometer in diameter) and diverse group of organisms called picoeukaryotes. So far, he has found that organisms from two isolated groups of the genus Micromonas -- which thrive in ecosystems ranging from tropical to polar -- look the same, but have evolved to contain different gene pools.

Bhattacharya said that understanding how these organisms change involves many issues.

The question, he said, is: "How do photosynthetic cells in the world's oceans recognize and adapt to their ever-changing environment and how will their latent abilities allow them to respond to climate change that will result in increased stratification and lower nutrient levels in the upper productive zone in oceans?

"To understand these complex issues, investigators need to generate gene catalogs from dominant plant organisms and understand how their genomes have evolved to thrive in vastly different oceanic regions ranging from near-shore to open ocean environments."

He said that the lead author of the Science article, Alexandra Z. Worden of the Monterey Bay Aquarium Research Institute and collaborators, addressed these key issues in oceanography by sequencing to completion the nuclear genome of two globally distributed, bacterial-sized green algae named Micromonas. One isolated sample (RCC299) came from tropical waters in the Pacific Ocean, whereas the other (CCMP1545) came from temperate Atlantic coastal waters off Plymouth, England.

"These picoeukaryotes are indistinguishable using cell morphology but turn out to be enormously different at the genome level," Bhattacharya said. "On average, these isolates share only 90 percent of the roughly 10,000 genes each contains, indicating they comprise distinct species. More remarkable is the finding of novel repeated sequences that have spread into genes of Atlantic sample that are completely missing in the Pacific sample."

He said that it is unclear how these ubiquitous elements originated or what their function might be in the Atlantic sample, but their presence demonstrates the distinct genomic trajectory that the two species have taken.

"Overall the genomes of these Micromonas species show clear indications of selection acting on the gene pool with each containing a set of unique genes acquired by horizontal gene transfer that are not shared with the other," he said. "These genes likely hold clues to how each species has adapted to its own specific marine environment."

"The work highlights the extent to which genomic diversity is hidden by a simple, shared morphology and points to the need to decipher gene functions in Micromonas to understand their role in adapting to regimes that define myriad marine environments," he said.

Genome sequencing was done by the U.S. Department of Energy Joint Genome Institute. Research in Bhattacharya's lab was funded by a grant from the National Science Foundation.

STORY SOURCE: University of Iowa News Services, 300 Plaza Centre One, Suite 371, Iowa City, Iowa 52242-2500

MEDIA CONTACT: Gary Galluzzo, 319-384-0009, gary-galluzzo@uiowa.edu

Gary Galluzzo | EurekAlert!
Further information:
http://www.uiowa.edu

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Millions through license revenues

27.04.2017 | Health and Medicine

The TU Ilmenau develops tomorrow’s chip technology today

27.04.2017 | Information Technology

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>