Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UI biologist studies ocean plant cell adaptation in climate change

20.04.2009
How will plant cells that live in the oceans and serve as the basic food supply for many of the world's sea creatures react to climate change?

A University of Iowa biologist and faculty member in the Roy J. Carver Center for Comparative Genomics and his colleagues came one step closer to answering that question in a paper published in the April 9 issue of the journal Science.

Debashish Bhattacharya, professor of biological sciences in the UI College of Liberal Arts and Sciences, is studying a tiny (about one micrometer in diameter) and diverse group of organisms called picoeukaryotes. So far, he has found that organisms from two isolated groups of the genus Micromonas -- which thrive in ecosystems ranging from tropical to polar -- look the same, but have evolved to contain different gene pools.

Bhattacharya said that understanding how these organisms change involves many issues.

The question, he said, is: "How do photosynthetic cells in the world's oceans recognize and adapt to their ever-changing environment and how will their latent abilities allow them to respond to climate change that will result in increased stratification and lower nutrient levels in the upper productive zone in oceans?

"To understand these complex issues, investigators need to generate gene catalogs from dominant plant organisms and understand how their genomes have evolved to thrive in vastly different oceanic regions ranging from near-shore to open ocean environments."

He said that the lead author of the Science article, Alexandra Z. Worden of the Monterey Bay Aquarium Research Institute and collaborators, addressed these key issues in oceanography by sequencing to completion the nuclear genome of two globally distributed, bacterial-sized green algae named Micromonas. One isolated sample (RCC299) came from tropical waters in the Pacific Ocean, whereas the other (CCMP1545) came from temperate Atlantic coastal waters off Plymouth, England.

"These picoeukaryotes are indistinguishable using cell morphology but turn out to be enormously different at the genome level," Bhattacharya said. "On average, these isolates share only 90 percent of the roughly 10,000 genes each contains, indicating they comprise distinct species. More remarkable is the finding of novel repeated sequences that have spread into genes of Atlantic sample that are completely missing in the Pacific sample."

He said that it is unclear how these ubiquitous elements originated or what their function might be in the Atlantic sample, but their presence demonstrates the distinct genomic trajectory that the two species have taken.

"Overall the genomes of these Micromonas species show clear indications of selection acting on the gene pool with each containing a set of unique genes acquired by horizontal gene transfer that are not shared with the other," he said. "These genes likely hold clues to how each species has adapted to its own specific marine environment."

"The work highlights the extent to which genomic diversity is hidden by a simple, shared morphology and points to the need to decipher gene functions in Micromonas to understand their role in adapting to regimes that define myriad marine environments," he said.

Genome sequencing was done by the U.S. Department of Energy Joint Genome Institute. Research in Bhattacharya's lab was funded by a grant from the National Science Foundation.

STORY SOURCE: University of Iowa News Services, 300 Plaza Centre One, Suite 371, Iowa City, Iowa 52242-2500

MEDIA CONTACT: Gary Galluzzo, 319-384-0009, gary-galluzzo@uiowa.edu

Gary Galluzzo | EurekAlert!
Further information:
http://www.uiowa.edu

More articles from Life Sciences:

nachricht Research team creates new possibilities for medicine and materials sciences
22.01.2018 | Humboldt-Universität zu Berlin

nachricht Saarland University bioinformaticians compute gene sequences inherited from each parent
22.01.2018 | Universität des Saarlandes

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>