Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UH researchers work to develop screening method for superbug

09.09.2011
A team of researchers from the University of Houston (UH) and St. Luke's Episcopal Hospital (SLEH) are working to develop improved screening methods to detect a potentially lethal, drug-resistant superbug that has made its way to Texas.

Specifically, the research team looked at a multi-drug resistant bacterium called Klebsiella pneumoniae, which is increasingly resistant to most drugs of last resort.

Commonly called CRKP, which is short for carbapenem-resistant Klebsiella pneumoniae, the bacteria were found in three patients at St. Luke's in 2010, and the team published a report about it in 2011 in the journal Diagnostic Microbiology & Infectious Disease. Endemic to the northeastern United States and recently making its way to California, reports of this particular superbug have remained uncommon throughout the majority of the country. The researchers believe these are the first confirmed cases in Texas.

"The key to effective therapy is to identify the infection quickly and accurately, so you can initiate the appropriate measures that will benefit the patient, prevent it from spreading and discourage the development of resistance," said Vincent Tam, associate professor of clinical sciences at the UH College of Pharmacy and co-author of the report. "The current methods of detection are far from perfect, but following national and international resistance trends, we are being proactive in anticipating problems so we can deal with them when they're in the initial, budding stage."

Although it's virtually impossible to pinpoint when or how this superbug arrived in Texas, researchers are working to determine its prevalence here and to develop strategies to deal with potential outbreaks. The bacteria can cause an array of infections, including pneumonia, bloodstream and urinary tract infections, and are becoming increasingly worrisome for clinicians.

Although Klebsiella pneumoniae is naturally found in the intestinal tract and relatively harmless to healthy individuals, it can lead to potentially deadly infections in people with weakened immune systems, such as patients in ICUs, long-term care facilities or nursing homes. These bacteria, for instance, are resistant to the carbapenem class of antibiotics, which are among the antimicrobials of last resort for this type of bacteria. As a result, clinicians managing the infection are left with few options but to employ more toxic drugs that pose an increased risk of damage to the kidneys or other organs.

The automated systems used in clinical microbiology laboratories can misclassify certain bacteria as being susceptible to carbapenems, potentially leading to inappropriate treatment and unfavorable patient outcomes. More accurate methods for identifying these specific bacteria require time- and labor-intensive processes and are typically only available in research laboratories outside of the clinical setting, such as at the Centers for Disease Control and academic research institutions such as UH.

With support from the Roderick D. MacDonald Research Fund at SLEH, Tam and his collaborators are working to determine the prevalence of CRKP and to employ promising techniques for rapid and accurate detection of these bacteria in the clinical setting, as well as prevent its spread within the health care system. In addition to Tam, who is also an infectious disease clinician at SLEH, the team consisted of former UH colleague Elizabeth Hirsch, who is now at Northeastern University; Kai-Tai Chang, a research associate at UH; and Todd Lasco and Juan-Pablo Caeiro of SLEH.

Editorial Note: High-resolution photos of Vincent Tam in the lab are available to media by contacting Lisa Merkl.

About the University of Houston

The University of Houston is a Carnegie-designated Tier One public research university recognized by The Princeton Review as one of the nation's best colleges for undergraduate education. UH serves the globally competitive Houston and Gulf Coast Region by providing world-class faculty, experiential learning and strategic industry partnerships. Located in the nation's fourth-largest city, UH serves more than 38,500 students in the most ethnically and culturally diverse region in the country.

About the UH College of Pharmacy

For more than 60 years, the University of Houston College of Pharmacy has shaped aspiring pharmacists, scientists and researchers. The college offers graduate degrees in pharmacy administration, pharmacology and pharmaceutics, a professional pharmacy degree and combined professional/graduate degrees. With facilities on the UH campus and in the Texas Medical Center, the UH College of Pharmacy is accredited by the Accreditation Council for Pharmacy Education.

For more information about UH, visit the university's Newsroom at http://www.uh.edu/news-events/.

To receive UH science news via e-mail, sign up for UH-SciNews at http://www.uh.edu/news-events/mailing-lists/sciencelistserv/index.php.

For additional news alerts about UH, follow us on Facebook at http://www.facebook.com/UHNewsEvents and Twitter at http://twitter.com/UH_News.

Lisa Merkl | EurekAlert!
Further information:
http://www.uh.edu

Further reports about: Disease Klebsiella Klebsiella pneumoniae Pharmacy immune system

More articles from Life Sciences:

nachricht New technique unveils 'matrix' inside tissues and tumors
29.06.2017 | University of Copenhagen The Faculty of Health and Medical Sciences

nachricht Designed proteins to treat muscular dystrophy
29.06.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>