Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UH researchers work to develop screening method for superbug

09.09.2011
A team of researchers from the University of Houston (UH) and St. Luke's Episcopal Hospital (SLEH) are working to develop improved screening methods to detect a potentially lethal, drug-resistant superbug that has made its way to Texas.

Specifically, the research team looked at a multi-drug resistant bacterium called Klebsiella pneumoniae, which is increasingly resistant to most drugs of last resort.

Commonly called CRKP, which is short for carbapenem-resistant Klebsiella pneumoniae, the bacteria were found in three patients at St. Luke's in 2010, and the team published a report about it in 2011 in the journal Diagnostic Microbiology & Infectious Disease. Endemic to the northeastern United States and recently making its way to California, reports of this particular superbug have remained uncommon throughout the majority of the country. The researchers believe these are the first confirmed cases in Texas.

"The key to effective therapy is to identify the infection quickly and accurately, so you can initiate the appropriate measures that will benefit the patient, prevent it from spreading and discourage the development of resistance," said Vincent Tam, associate professor of clinical sciences at the UH College of Pharmacy and co-author of the report. "The current methods of detection are far from perfect, but following national and international resistance trends, we are being proactive in anticipating problems so we can deal with them when they're in the initial, budding stage."

Although it's virtually impossible to pinpoint when or how this superbug arrived in Texas, researchers are working to determine its prevalence here and to develop strategies to deal with potential outbreaks. The bacteria can cause an array of infections, including pneumonia, bloodstream and urinary tract infections, and are becoming increasingly worrisome for clinicians.

Although Klebsiella pneumoniae is naturally found in the intestinal tract and relatively harmless to healthy individuals, it can lead to potentially deadly infections in people with weakened immune systems, such as patients in ICUs, long-term care facilities or nursing homes. These bacteria, for instance, are resistant to the carbapenem class of antibiotics, which are among the antimicrobials of last resort for this type of bacteria. As a result, clinicians managing the infection are left with few options but to employ more toxic drugs that pose an increased risk of damage to the kidneys or other organs.

The automated systems used in clinical microbiology laboratories can misclassify certain bacteria as being susceptible to carbapenems, potentially leading to inappropriate treatment and unfavorable patient outcomes. More accurate methods for identifying these specific bacteria require time- and labor-intensive processes and are typically only available in research laboratories outside of the clinical setting, such as at the Centers for Disease Control and academic research institutions such as UH.

With support from the Roderick D. MacDonald Research Fund at SLEH, Tam and his collaborators are working to determine the prevalence of CRKP and to employ promising techniques for rapid and accurate detection of these bacteria in the clinical setting, as well as prevent its spread within the health care system. In addition to Tam, who is also an infectious disease clinician at SLEH, the team consisted of former UH colleague Elizabeth Hirsch, who is now at Northeastern University; Kai-Tai Chang, a research associate at UH; and Todd Lasco and Juan-Pablo Caeiro of SLEH.

Editorial Note: High-resolution photos of Vincent Tam in the lab are available to media by contacting Lisa Merkl.

About the University of Houston

The University of Houston is a Carnegie-designated Tier One public research university recognized by The Princeton Review as one of the nation's best colleges for undergraduate education. UH serves the globally competitive Houston and Gulf Coast Region by providing world-class faculty, experiential learning and strategic industry partnerships. Located in the nation's fourth-largest city, UH serves more than 38,500 students in the most ethnically and culturally diverse region in the country.

About the UH College of Pharmacy

For more than 60 years, the University of Houston College of Pharmacy has shaped aspiring pharmacists, scientists and researchers. The college offers graduate degrees in pharmacy administration, pharmacology and pharmaceutics, a professional pharmacy degree and combined professional/graduate degrees. With facilities on the UH campus and in the Texas Medical Center, the UH College of Pharmacy is accredited by the Accreditation Council for Pharmacy Education.

For more information about UH, visit the university's Newsroom at http://www.uh.edu/news-events/.

To receive UH science news via e-mail, sign up for UH-SciNews at http://www.uh.edu/news-events/mailing-lists/sciencelistserv/index.php.

For additional news alerts about UH, follow us on Facebook at http://www.facebook.com/UHNewsEvents and Twitter at http://twitter.com/UH_News.

Lisa Merkl | EurekAlert!
Further information:
http://www.uh.edu

Further reports about: Disease Klebsiella Klebsiella pneumoniae Pharmacy immune system

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>