Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UH researchers work to develop screening method for superbug

09.09.2011
A team of researchers from the University of Houston (UH) and St. Luke's Episcopal Hospital (SLEH) are working to develop improved screening methods to detect a potentially lethal, drug-resistant superbug that has made its way to Texas.

Specifically, the research team looked at a multi-drug resistant bacterium called Klebsiella pneumoniae, which is increasingly resistant to most drugs of last resort.

Commonly called CRKP, which is short for carbapenem-resistant Klebsiella pneumoniae, the bacteria were found in three patients at St. Luke's in 2010, and the team published a report about it in 2011 in the journal Diagnostic Microbiology & Infectious Disease. Endemic to the northeastern United States and recently making its way to California, reports of this particular superbug have remained uncommon throughout the majority of the country. The researchers believe these are the first confirmed cases in Texas.

"The key to effective therapy is to identify the infection quickly and accurately, so you can initiate the appropriate measures that will benefit the patient, prevent it from spreading and discourage the development of resistance," said Vincent Tam, associate professor of clinical sciences at the UH College of Pharmacy and co-author of the report. "The current methods of detection are far from perfect, but following national and international resistance trends, we are being proactive in anticipating problems so we can deal with them when they're in the initial, budding stage."

Although it's virtually impossible to pinpoint when or how this superbug arrived in Texas, researchers are working to determine its prevalence here and to develop strategies to deal with potential outbreaks. The bacteria can cause an array of infections, including pneumonia, bloodstream and urinary tract infections, and are becoming increasingly worrisome for clinicians.

Although Klebsiella pneumoniae is naturally found in the intestinal tract and relatively harmless to healthy individuals, it can lead to potentially deadly infections in people with weakened immune systems, such as patients in ICUs, long-term care facilities or nursing homes. These bacteria, for instance, are resistant to the carbapenem class of antibiotics, which are among the antimicrobials of last resort for this type of bacteria. As a result, clinicians managing the infection are left with few options but to employ more toxic drugs that pose an increased risk of damage to the kidneys or other organs.

The automated systems used in clinical microbiology laboratories can misclassify certain bacteria as being susceptible to carbapenems, potentially leading to inappropriate treatment and unfavorable patient outcomes. More accurate methods for identifying these specific bacteria require time- and labor-intensive processes and are typically only available in research laboratories outside of the clinical setting, such as at the Centers for Disease Control and academic research institutions such as UH.

With support from the Roderick D. MacDonald Research Fund at SLEH, Tam and his collaborators are working to determine the prevalence of CRKP and to employ promising techniques for rapid and accurate detection of these bacteria in the clinical setting, as well as prevent its spread within the health care system. In addition to Tam, who is also an infectious disease clinician at SLEH, the team consisted of former UH colleague Elizabeth Hirsch, who is now at Northeastern University; Kai-Tai Chang, a research associate at UH; and Todd Lasco and Juan-Pablo Caeiro of SLEH.

Editorial Note: High-resolution photos of Vincent Tam in the lab are available to media by contacting Lisa Merkl.

About the University of Houston

The University of Houston is a Carnegie-designated Tier One public research university recognized by The Princeton Review as one of the nation's best colleges for undergraduate education. UH serves the globally competitive Houston and Gulf Coast Region by providing world-class faculty, experiential learning and strategic industry partnerships. Located in the nation's fourth-largest city, UH serves more than 38,500 students in the most ethnically and culturally diverse region in the country.

About the UH College of Pharmacy

For more than 60 years, the University of Houston College of Pharmacy has shaped aspiring pharmacists, scientists and researchers. The college offers graduate degrees in pharmacy administration, pharmacology and pharmaceutics, a professional pharmacy degree and combined professional/graduate degrees. With facilities on the UH campus and in the Texas Medical Center, the UH College of Pharmacy is accredited by the Accreditation Council for Pharmacy Education.

For more information about UH, visit the university's Newsroom at http://www.uh.edu/news-events/.

To receive UH science news via e-mail, sign up for UH-SciNews at http://www.uh.edu/news-events/mailing-lists/sciencelistserv/index.php.

For additional news alerts about UH, follow us on Facebook at http://www.facebook.com/UHNewsEvents and Twitter at http://twitter.com/UH_News.

Lisa Merkl | EurekAlert!
Further information:
http://www.uh.edu

Further reports about: Disease Klebsiella Klebsiella pneumoniae Pharmacy immune system

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>