Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UGA researchers use nanoparticles to enhance chemotherapy

08.07.2014

University of Georgia researchers have developed a new formulation of cisplatin, a common chemotherapy drug, that significantly increases the drug's ability to target and destroy cancerous cells.

Cisplatin may be used to treat a variety of cancers, but it is most commonly prescribed for cancer of the bladder, ovaries, cervix, testicles and lung. It is an effective drug, but many cancerous cells develop resistance to the treatment.

Shanta Dhar, assistant professor of chemistry in the UGA Franklin College of Arts and Sciences, and Rakesh Pathak, a postdoctoral researcher in Dhar's lab, constructed a modified version of cisplatin called Platin-M, which is designed to overcome this resistance by attacking mitochondria within cancerous cells. They published their findings recently in the Proceedings of the National Academy of Sciences.

"You can think of mitochondria as a kind of powerhouse for the cell, generating the energy it needs to grow and reproduce," said Dhar, a member of the UGA Cancer Center and principal investigator for the project. "This prodrug delivers cisplatin directly to the mitochondria in cancerous cells. Without that essential powerhouse, the cell cannot survive."

Sean Marrache, a graduate student in Dhar's lab, entrapped Platin-M in a specially designed nanoparticle 1,000 times finer than a human hair that seeks out the mitochondria and releases the drug. Once inside, Platin-M interferes with the mitochondria's DNA, triggering cell death.

Dhar's research team tested Platin-M on neuroblastoma-a cancer commonly diagnosed in children-that typically originates in the adrenal glands. In preliminary experiments using a cisplatin-resistant cell culture, Platin-M nanoparticles were 17 times more active than cisplatin alone.

"This technique could become a treatment for a number of cancers, but it may prove most useful for more aggressive forms of cancer that are resistant to current therapies," said Pathak.

Both Dhar and Pathak caution that their experimental results are preliminary and they must do more work before Platin-M enters any clinical trials. However, their early results in mouse models are promising, and they are currently developing safety trials in larger animals.

"Cisplatin is a well-studied chemotherapy, so we hope our unique formulation will enhance its efficacy," said Dhar, who is also a member of UGA's Nanoscale Science and Engineering Center, Center for Drug Discovery, and Regenerative Bioscience Center. "We are excited about these early results, which look very promising."

This work was supported by an award from the National Institutes of Health, grant number P30GM092378, through the UGA Center of Metalloenzyme Studies and the UGA Office of the Vice President for Research.

For a full version of the article, see www.pnas.org/cgi/doi/10.1073/pnas.1405244111.

Shanta Dhar | Eurek Alert!
Further information:
http://news.uga.edu/releases/article/nanoparticles-to-enhance-chemotherapy/

More articles from Life Sciences:

nachricht Fruit fly studies shed light on adaptability of nerve cells
17.04.2015 | Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

nachricht Rare monkey photographed in Congo's newest national park, Ntokou-Pikounda
17.04.2015 | Wildlife Conservation Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Astronomers reveal supermassive black hole's intense magnetic field

Astronomers from Chalmers University of Technology have used the giant telescope Alma to reveal an extremely powerful magnetic field very close to a supermassive black hole in a distant galaxy

Astronomers from Chalmers University of Technology have used the giant telescope Alma to reveal an extremely powerful magnetic field very close to a...

Im Focus: A “pin ball machine” for atoms and photons

A team of physicists from MPQ, Caltech, and ICFO proposes the combination of nano-photonics with ultracold atoms for simulating quantum many-body systems and creating new states of matter.

Ultracold atoms in the so-called optical lattices, that are generated by crosswise superposition of laser beams, have been proven to be one of the most...

Im Focus: UV light robot to clean hospital rooms could help stop spread of 'superbugs'

Can a robot clean a hospital room just as well as a person?

According to new research out of the Texas A&M Health Science Center College of Medicine, that is indeed the case. Chetan Jinadatha, M.D., M.P.H., assistant...

Im Focus: Graphene pushes the speed limit of light-to-electricity conversion

Researchers from ICFO, MIT and UC Riverside have been able to develop a graphene-based photodetector capable of converting absorbed light into an electrical voltage at ultrafast timescales

The efficient conversion of light into electricity plays a crucial role in many technologies, ranging from cameras to solar cells.

Im Focus: Study shows novel pattern of electrical charge movement through DNA

Electrical charges not only move through wires, they also travel along lengths of DNA, the molecule of life. The property is known as charge transport.

In a new study appearing in the journal Nature Chemistry, authors, Limin Xiang, Julio Palma, Christopher Bruot and others at Arizona State University's...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HHL's Entrepreneurship Conference on FinTech

13.04.2015 | Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

 
Latest News

Engineer Improves Rechargeable Batteries with MoS2 Nano 'Sandwich'

17.04.2015 | Power and Electrical Engineering

Comparing Climate Models to Real World Shows Differences in Precipitation Intensity

17.04.2015 | Earth Sciences

A blueprint for clearing the skies of space debris

17.04.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>