Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UGA researchers use nanoparticles to enhance chemotherapy

08.07.2014

University of Georgia researchers have developed a new formulation of cisplatin, a common chemotherapy drug, that significantly increases the drug's ability to target and destroy cancerous cells.

Cisplatin may be used to treat a variety of cancers, but it is most commonly prescribed for cancer of the bladder, ovaries, cervix, testicles and lung. It is an effective drug, but many cancerous cells develop resistance to the treatment.

Shanta Dhar, assistant professor of chemistry in the UGA Franklin College of Arts and Sciences, and Rakesh Pathak, a postdoctoral researcher in Dhar's lab, constructed a modified version of cisplatin called Platin-M, which is designed to overcome this resistance by attacking mitochondria within cancerous cells. They published their findings recently in the Proceedings of the National Academy of Sciences.

"You can think of mitochondria as a kind of powerhouse for the cell, generating the energy it needs to grow and reproduce," said Dhar, a member of the UGA Cancer Center and principal investigator for the project. "This prodrug delivers cisplatin directly to the mitochondria in cancerous cells. Without that essential powerhouse, the cell cannot survive."

Sean Marrache, a graduate student in Dhar's lab, entrapped Platin-M in a specially designed nanoparticle 1,000 times finer than a human hair that seeks out the mitochondria and releases the drug. Once inside, Platin-M interferes with the mitochondria's DNA, triggering cell death.

Dhar's research team tested Platin-M on neuroblastoma-a cancer commonly diagnosed in children-that typically originates in the adrenal glands. In preliminary experiments using a cisplatin-resistant cell culture, Platin-M nanoparticles were 17 times more active than cisplatin alone.

"This technique could become a treatment for a number of cancers, but it may prove most useful for more aggressive forms of cancer that are resistant to current therapies," said Pathak.

Both Dhar and Pathak caution that their experimental results are preliminary and they must do more work before Platin-M enters any clinical trials. However, their early results in mouse models are promising, and they are currently developing safety trials in larger animals.

"Cisplatin is a well-studied chemotherapy, so we hope our unique formulation will enhance its efficacy," said Dhar, who is also a member of UGA's Nanoscale Science and Engineering Center, Center for Drug Discovery, and Regenerative Bioscience Center. "We are excited about these early results, which look very promising."

This work was supported by an award from the National Institutes of Health, grant number P30GM092378, through the UGA Center of Metalloenzyme Studies and the UGA Office of the Vice President for Research.

For a full version of the article, see www.pnas.org/cgi/doi/10.1073/pnas.1405244111.

Shanta Dhar | Eurek Alert!
Further information:
http://news.uga.edu/releases/article/nanoparticles-to-enhance-chemotherapy/

More articles from Life Sciences:

nachricht A cell senses its own curves: New research from the MBL Whitman Center
29.04.2016 | Marine Biological Laboratory

nachricht A New Discovery in the Fight against Cancer: Tumor Cells Switch to a Different Mode
29.04.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

Im Focus: New world record for fullerene-free polymer solar cells

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences (CAS). This work is about avoiding costly and unstable fullerenes.

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences...

Im Focus: Ultra-thin glass is up and coming

As one of the leading R&D partners in the development of surface technologies and organic electronics, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP will be exhibiting its recent achievements in vacuum coating of ultra-thin glass at SVC TechCon 2016 (Booth 846), taking place in Indianapolis / USA from May 9 – 13.

Fraunhofer FEP is an experienced partner for technological developments, known for testing the limits of new materials and for optimization of those materials...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Winds a quarter the speed of light spotted leaving mysterious binary systems

29.04.2016 | Physics and Astronomy

Fiber optic biosensor-integrated microfluidic chip to detect glucose levels

29.04.2016 | Health and Medicine

A cell senses its own curves: New research from the MBL Whitman Center

29.04.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>