Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UGA researchers use nanoparticles to enhance chemotherapy


University of Georgia researchers have developed a new formulation of cisplatin, a common chemotherapy drug, that significantly increases the drug's ability to target and destroy cancerous cells.

Cisplatin may be used to treat a variety of cancers, but it is most commonly prescribed for cancer of the bladder, ovaries, cervix, testicles and lung. It is an effective drug, but many cancerous cells develop resistance to the treatment.

Shanta Dhar, assistant professor of chemistry in the UGA Franklin College of Arts and Sciences, and Rakesh Pathak, a postdoctoral researcher in Dhar's lab, constructed a modified version of cisplatin called Platin-M, which is designed to overcome this resistance by attacking mitochondria within cancerous cells. They published their findings recently in the Proceedings of the National Academy of Sciences.

"You can think of mitochondria as a kind of powerhouse for the cell, generating the energy it needs to grow and reproduce," said Dhar, a member of the UGA Cancer Center and principal investigator for the project. "This prodrug delivers cisplatin directly to the mitochondria in cancerous cells. Without that essential powerhouse, the cell cannot survive."

Sean Marrache, a graduate student in Dhar's lab, entrapped Platin-M in a specially designed nanoparticle 1,000 times finer than a human hair that seeks out the mitochondria and releases the drug. Once inside, Platin-M interferes with the mitochondria's DNA, triggering cell death.

Dhar's research team tested Platin-M on neuroblastoma-a cancer commonly diagnosed in children-that typically originates in the adrenal glands. In preliminary experiments using a cisplatin-resistant cell culture, Platin-M nanoparticles were 17 times more active than cisplatin alone.

"This technique could become a treatment for a number of cancers, but it may prove most useful for more aggressive forms of cancer that are resistant to current therapies," said Pathak.

Both Dhar and Pathak caution that their experimental results are preliminary and they must do more work before Platin-M enters any clinical trials. However, their early results in mouse models are promising, and they are currently developing safety trials in larger animals.

"Cisplatin is a well-studied chemotherapy, so we hope our unique formulation will enhance its efficacy," said Dhar, who is also a member of UGA's Nanoscale Science and Engineering Center, Center for Drug Discovery, and Regenerative Bioscience Center. "We are excited about these early results, which look very promising."

This work was supported by an award from the National Institutes of Health, grant number P30GM092378, through the UGA Center of Metalloenzyme Studies and the UGA Office of the Vice President for Research.

For a full version of the article, see

Shanta Dhar | Eurek Alert!
Further information:

More articles from Life Sciences:

nachricht Supercoiled DNA is far more dynamic than the 'Watson-Crick' double helix
13.10.2015 | University of Leeds

nachricht New Oregon approach for 'nanohoops' could energize future devices
13.10.2015 | University of Oregon

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Secure data transfer thanks to a single photon

Physicists of TU Berlin and mathematicians of MATHEON are so successful that even the prestigious journal “Nature Communications” reported on their project.

Security in data transfer is an important issue, and not only since the NSA scandal. Sometimes, however, the need for speed conflicts to a certain degree with...

Im Focus: A Light Touch May Help Animals and Robots Move on Sand and Snow

Having a light touch can make a hefty difference in how well animals and robots move across challenging granular surfaces such as snow, sand and leaf litter. Research reported October 9 in the journal Bioinspiration & Biomimetics shows how the design of appendages – whether legs or wheels – affects the ability of both robots and animals to cross weak and flowing surfaces.

Using an air fluidized bed trackway filled with poppy seeds or glass spheres, researchers at the Georgia Institute of Technology systematically varied the...

Im Focus: Reliable in-line inspections of high-strength automotive body parts within seconds

Nondestructive material testing (NDT) is a fast and effective way to analyze the quality of a product during the manufacturing process. Because defective materials can lead to malfunctioning finished products, NDT is an essential quality assurance measure, especially in the manufacture of safety-critical components such as automotive B-pillars. NDT examines the quality without damaging the component or modifying the surface of the material. At this year's Blechexpo trade fair in Stuttgart, Fraunhofer IZFP will have an exhibit that demonstrates the nondestructive testing of high-strength automotive body parts using 3MA. The measurement results are available in a matter of seconds.

To minimize vehicle weight and fuel consumption while providing the highest level of crash safety, automotive bodies are reinforced with elements made from...

Im Focus: Kick-off for a new era of precision astronomy

The MICADO camera, a first light instrument for the European Extremely Large Telescope (E-ELT), has entered a new phase in the project: by agreeing to a Memorandum of Understanding, the partners in Germany, France, the Netherlands, Austria, and Italy, have all confirmed their participation. Following this milestone, the project's transition into its preliminary design phase was approved at a kick-off meeting held in Vienna. Two weeks earlier, on September 18, the consortium and the European Southern Observatory (ESO), which is building the telescope, have signed the corresponding collaboration agreement.

As the first dedicated camera for the E-ELT, MICADO will equip the giant telescope with a capability for diffraction-limited imaging at near-infrared...

Im Focus: Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes

Self-driving cars will be on our streets in the foreseeable future. In Graz, research is currently dedicated to an innovative driver assistance system that takes over control if there is a danger of collision. It was nature that inspired Dr Manfred Hartbauer from the Institute of Zoology at the University of Graz: in dangerous traffic situations, migratory locusts react around ten times faster than humans. Working together with an interdisciplinary team, Hartbauer is investigating an affordable collision detector that is equipped with artificial locust eyes and can recognise potential crashes in time, during both day and night.

Inspired by insects

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

Smart clothing, mini-eyes, and a virtual twin – Artificial Intelligence at ICT 2015

13.10.2015 | Trade Fair News

Listening to the Extragalactic Radio

13.10.2015 | Physics and Astronomy

Penn study stops vision loss in late-stage canine X-linked retinitis pigmentosa

13.10.2015 | Health and Medicine

More VideoLinks >>>