Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UGA researchers identify key enzyme that regulates the early growth of breast cancer cells

19.11.2010
New University of Georgia research, published this week in the early online edition of the journal Proceedings of the National Academy of Sciences, has found that blocking the action of an enzyme called GnT-V significantly delays the onset and spread of tumors in mice with cancer very similar to many cases of human breast cancer.

When the GnT-V enzyme activity in the cells was increased in mammary gland cells, they increased proliferation and began to take on many characteristics of cancer cells. Using a mouse model of human breast cancer, tumors appeared when the enzyme was deleted, but onset was delayed an average of 10 weeks in the mice.

"In human terms," said Michael Pierce, director of the UGA Cancer Center and study co-author, "the corresponding delay would be many months and maybe years. You basically are slowing everything down and keeping the cancer from forming and progressing very early." Slowing the pace of the cancer could eliminate its spread to other organs, keeping it localized where it could be treated successfully, Pierce explained.

The researchers, lead by Hua-Bei Guo, assistant research scientist in the department of biochemistry and molecular biology in the Franklin College of Arts and Sciences, stimulated breast cancer formation in mouse mammary glands by over-expressing a her-2 protein that is a growth receptor on the cell surface. The researchers note that over-expression of her-2 is associated with 25 to 30 percent of human breast cancers.

The GnT-V enzyme makes glycans, which are sugars on the cell surface that change in defined ways when the cell becomes cancerous. Glycans are released from the cell as glycoproteins, making them a promising early-detection marker in blood. The researchers studied a glycan made by GnT-V that appears when normal breast cells become cancerous. The GnT-V glycan product is found on her-2 and other receptors and acts to regulate the number of cancer stem cells in the tissue. The number of these cancer stem cells determines how rapidly the cancer will form and develop.

"Glycans often are ignored by scientists, because they're very complicated and present unusual problems to identify and understand," said Pierce. "This study is an example of how particular glycans that are present on various cell receptors can actually modulate the onset of tumor formation. That may give us new drug targets and new ways to kill the cancer cells specifically."

The finding of Guo and the research team at UGA's Complex Carbohydrate Research Center that the elimination of a glycan-synthesizing enzyme significantly reduced the population of breast cancer stem cells is unprecedented, they note.

"That population of cells appears to drive breast tumor formation in many cases," said Pierce, who also is UGA's Mudter Professor in Cancer Research, "and our research suggests that glycans may be potential targets to kill them selectively."

Pierce likened the cancerous stem cells to the queen of an ant colony. "You can try to get rid of the anthill, but it will just come back if you don't kill the queen," Pierce said. "If we can target those cancer stem cells for elimination, that would be the most effective treatment."

The research was supported by the National Institutes of Health. For more information on the UGA Cancer Center, see www.uga.edu/cancercenter/.

Michael Pierce | EurekAlert!
Further information:
http://www.uga.edu
http://www.uga.edu/cancercenter/

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>