Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UGA researchers identify key enzyme that regulates the early growth of breast cancer cells

19.11.2010
New University of Georgia research, published this week in the early online edition of the journal Proceedings of the National Academy of Sciences, has found that blocking the action of an enzyme called GnT-V significantly delays the onset and spread of tumors in mice with cancer very similar to many cases of human breast cancer.

When the GnT-V enzyme activity in the cells was increased in mammary gland cells, they increased proliferation and began to take on many characteristics of cancer cells. Using a mouse model of human breast cancer, tumors appeared when the enzyme was deleted, but onset was delayed an average of 10 weeks in the mice.

"In human terms," said Michael Pierce, director of the UGA Cancer Center and study co-author, "the corresponding delay would be many months and maybe years. You basically are slowing everything down and keeping the cancer from forming and progressing very early." Slowing the pace of the cancer could eliminate its spread to other organs, keeping it localized where it could be treated successfully, Pierce explained.

The researchers, lead by Hua-Bei Guo, assistant research scientist in the department of biochemistry and molecular biology in the Franklin College of Arts and Sciences, stimulated breast cancer formation in mouse mammary glands by over-expressing a her-2 protein that is a growth receptor on the cell surface. The researchers note that over-expression of her-2 is associated with 25 to 30 percent of human breast cancers.

The GnT-V enzyme makes glycans, which are sugars on the cell surface that change in defined ways when the cell becomes cancerous. Glycans are released from the cell as glycoproteins, making them a promising early-detection marker in blood. The researchers studied a glycan made by GnT-V that appears when normal breast cells become cancerous. The GnT-V glycan product is found on her-2 and other receptors and acts to regulate the number of cancer stem cells in the tissue. The number of these cancer stem cells determines how rapidly the cancer will form and develop.

"Glycans often are ignored by scientists, because they're very complicated and present unusual problems to identify and understand," said Pierce. "This study is an example of how particular glycans that are present on various cell receptors can actually modulate the onset of tumor formation. That may give us new drug targets and new ways to kill the cancer cells specifically."

The finding of Guo and the research team at UGA's Complex Carbohydrate Research Center that the elimination of a glycan-synthesizing enzyme significantly reduced the population of breast cancer stem cells is unprecedented, they note.

"That population of cells appears to drive breast tumor formation in many cases," said Pierce, who also is UGA's Mudter Professor in Cancer Research, "and our research suggests that glycans may be potential targets to kill them selectively."

Pierce likened the cancerous stem cells to the queen of an ant colony. "You can try to get rid of the anthill, but it will just come back if you don't kill the queen," Pierce said. "If we can target those cancer stem cells for elimination, that would be the most effective treatment."

The research was supported by the National Institutes of Health. For more information on the UGA Cancer Center, see www.uga.edu/cancercenter/.

Michael Pierce | EurekAlert!
Further information:
http://www.uga.edu
http://www.uga.edu/cancercenter/

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>