Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UGA researchers explore function of cancer-causing gene

27.03.2014

Developmental biologists at the University of Georgia are discovering new roles for a specific gene known as Max's Giant Associated protein, or MGA. A little studied protein, MGA appears to control a number of developmental processes, and also may be connected to cancer development.

The researchers detail their findings in a paper published recently in the journal Developmental Cell.


Scott Dougan is a Georgia Cancer Coalition Distinguished Cancer Scientist in the University of Georgia's Department of Cellular Biology.

"The same genes that are involved in building a person during embryonic development can mutate and cause cancer later in life," said Scott Dougan the study's principal investigator and Georgia Cancer Coalition Distinguished Cancer Scientist in UGA's Franklin College of Arts and Sciences department of cellular biology. "No one has done a systematic study of MGA, but now that some studies connect it to cancer, there is tremendous interest."

The most common cancer associated with MGA is chronic lymphocytic leukemia, a blood and bone marrow disease in which the body produces too many white blood cells. Preliminary tests suggest that this cancer might develop when MGA does not successfully control the activities of another protein known as MYC, which contributes to tumor growth.

Dougan and his team of researchers used their own methods to change the levels of MGA in the embryos of zebrafish to see if they could discover any other roles for MGA.

They found that MGA also helps control expression of the Bone Morphogenetic Proteins, or BMP, which, as the name implies, are responsible for bone development in the embryo. In adults, however, changes in BMP activity can result in tumor development, and MGA may be part of this detrimental transformation.

"Scientists are only beginning to understand the roles this MGA protein plays, but our tests show that MGA may control many more processes than first imagined," said Dougan, who is also a member of UGA's Developmental Biology Alliance. "MGA may be involved in a number of other cancers, but we need to do more research before we're sure."

In the coming months, Dougan and his research team plan to further examine the roles of MGA to determine when it controls MYC, when it controls BMP and how it is involved in tumor formation.

"This is basic science, and we need investigations like these to understand the fundamentals of our biology," Dougan said. "Once we have this understanding, we can begin to develop new therapies to treat diseases in new, more effective ways."

Other researchers on this project include Yuhua Sun, Wei-Chia Tseng, Xiang Fan and Rebecca Ball. A full copy of the paper in Developmental Cell is available at: http://www.cell.com/developmental-cell/abstract/S1534-5807(14)00026-4

Scott Dougan | EurekAlert!

Further reports about: BMP Biology CANCER Cancer Cell Genetics Health Sciences UGA blood cancer-causing develop function medical science

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>