Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UGA researchers explore function of cancer-causing gene

27.03.2014

Developmental biologists at the University of Georgia are discovering new roles for a specific gene known as Max's Giant Associated protein, or MGA. A little studied protein, MGA appears to control a number of developmental processes, and also may be connected to cancer development.

The researchers detail their findings in a paper published recently in the journal Developmental Cell.


Scott Dougan is a Georgia Cancer Coalition Distinguished Cancer Scientist in the University of Georgia's Department of Cellular Biology.

"The same genes that are involved in building a person during embryonic development can mutate and cause cancer later in life," said Scott Dougan the study's principal investigator and Georgia Cancer Coalition Distinguished Cancer Scientist in UGA's Franklin College of Arts and Sciences department of cellular biology. "No one has done a systematic study of MGA, but now that some studies connect it to cancer, there is tremendous interest."

The most common cancer associated with MGA is chronic lymphocytic leukemia, a blood and bone marrow disease in which the body produces too many white blood cells. Preliminary tests suggest that this cancer might develop when MGA does not successfully control the activities of another protein known as MYC, which contributes to tumor growth.

Dougan and his team of researchers used their own methods to change the levels of MGA in the embryos of zebrafish to see if they could discover any other roles for MGA.

They found that MGA also helps control expression of the Bone Morphogenetic Proteins, or BMP, which, as the name implies, are responsible for bone development in the embryo. In adults, however, changes in BMP activity can result in tumor development, and MGA may be part of this detrimental transformation.

"Scientists are only beginning to understand the roles this MGA protein plays, but our tests show that MGA may control many more processes than first imagined," said Dougan, who is also a member of UGA's Developmental Biology Alliance. "MGA may be involved in a number of other cancers, but we need to do more research before we're sure."

In the coming months, Dougan and his research team plan to further examine the roles of MGA to determine when it controls MYC, when it controls BMP and how it is involved in tumor formation.

"This is basic science, and we need investigations like these to understand the fundamentals of our biology," Dougan said. "Once we have this understanding, we can begin to develop new therapies to treat diseases in new, more effective ways."

Other researchers on this project include Yuhua Sun, Wei-Chia Tseng, Xiang Fan and Rebecca Ball. A full copy of the paper in Developmental Cell is available at: http://www.cell.com/developmental-cell/abstract/S1534-5807(14)00026-4

Scott Dougan | EurekAlert!

Further reports about: BMP Biology CANCER Cancer Cell Genetics Health Sciences UGA blood cancer-causing develop function medical science

More articles from Life Sciences:

nachricht A cell senses its own curves: New research from the MBL Whitman Center
29.04.2016 | Marine Biological Laboratory

nachricht A New Discovery in the Fight against Cancer: Tumor Cells Switch to a Different Mode
29.04.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

Im Focus: New world record for fullerene-free polymer solar cells

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences (CAS). This work is about avoiding costly and unstable fullerenes.

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences...

Im Focus: Ultra-thin glass is up and coming

As one of the leading R&D partners in the development of surface technologies and organic electronics, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP will be exhibiting its recent achievements in vacuum coating of ultra-thin glass at SVC TechCon 2016 (Booth 846), taking place in Indianapolis / USA from May 9 – 13.

Fraunhofer FEP is an experienced partner for technological developments, known for testing the limits of new materials and for optimization of those materials...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Winds a quarter the speed of light spotted leaving mysterious binary systems

29.04.2016 | Physics and Astronomy

Fiber optic biosensor-integrated microfluidic chip to detect glucose levels

29.04.2016 | Health and Medicine

A cell senses its own curves: New research from the MBL Whitman Center

29.04.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>