Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UGA researchers explore function of cancer-causing gene

27.03.2014

Developmental biologists at the University of Georgia are discovering new roles for a specific gene known as Max's Giant Associated protein, or MGA. A little studied protein, MGA appears to control a number of developmental processes, and also may be connected to cancer development.

The researchers detail their findings in a paper published recently in the journal Developmental Cell.


Scott Dougan is a Georgia Cancer Coalition Distinguished Cancer Scientist in the University of Georgia's Department of Cellular Biology.

"The same genes that are involved in building a person during embryonic development can mutate and cause cancer later in life," said Scott Dougan the study's principal investigator and Georgia Cancer Coalition Distinguished Cancer Scientist in UGA's Franklin College of Arts and Sciences department of cellular biology. "No one has done a systematic study of MGA, but now that some studies connect it to cancer, there is tremendous interest."

The most common cancer associated with MGA is chronic lymphocytic leukemia, a blood and bone marrow disease in which the body produces too many white blood cells. Preliminary tests suggest that this cancer might develop when MGA does not successfully control the activities of another protein known as MYC, which contributes to tumor growth.

Dougan and his team of researchers used their own methods to change the levels of MGA in the embryos of zebrafish to see if they could discover any other roles for MGA.

They found that MGA also helps control expression of the Bone Morphogenetic Proteins, or BMP, which, as the name implies, are responsible for bone development in the embryo. In adults, however, changes in BMP activity can result in tumor development, and MGA may be part of this detrimental transformation.

"Scientists are only beginning to understand the roles this MGA protein plays, but our tests show that MGA may control many more processes than first imagined," said Dougan, who is also a member of UGA's Developmental Biology Alliance. "MGA may be involved in a number of other cancers, but we need to do more research before we're sure."

In the coming months, Dougan and his research team plan to further examine the roles of MGA to determine when it controls MYC, when it controls BMP and how it is involved in tumor formation.

"This is basic science, and we need investigations like these to understand the fundamentals of our biology," Dougan said. "Once we have this understanding, we can begin to develop new therapies to treat diseases in new, more effective ways."

Other researchers on this project include Yuhua Sun, Wei-Chia Tseng, Xiang Fan and Rebecca Ball. A full copy of the paper in Developmental Cell is available at: http://www.cell.com/developmental-cell/abstract/S1534-5807(14)00026-4

Scott Dougan | EurekAlert!

Further reports about: BMP Biology CANCER Cancer Cell Genetics Health Sciences UGA blood cancer-causing develop function medical science

More articles from Life Sciences:

nachricht New switch decides between genome repair and death of cells
27.09.2016 | University of Cologne - Universität zu Köln

nachricht A blue stoplight to prevent runaway photosynthesis
27.09.2016 | National Institute for Basic Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

 
Latest News

New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development

28.09.2016 | Medical Engineering

Innovate coating extends the life of materials for industrial use

28.09.2016 | Materials Sciences

Blockchain Set to Transform the Financial Services Market

28.09.2016 | Business and Finance

VideoLinks
B2B-VideoLinks
More VideoLinks >>>