Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UGA researchers edit plant DNA using mechanism evolved in bacteria

05.06.2015

Researchers at the University of Georgia have used a gene editing tool known as CRISPR/Cas to modify the genome of a tree species for the first time. Their research, published recently in the early online edition of the journal New Phytologist, opens the door to more rapid and reliable gene editing of plants.

By mutating specific genes in Populus--a genus of deciduous trees that includes poplar, aspen and cottonwood--the researchers reduced the concentrations of two naturally occurring plant polymers.


Poplar plants produced from a lignin-gene-targeting experiment in C.J. Tsai's lab at the University of Georgia had red-colored wood. Red stem is a known side effect of lignin modification, so the researchers knew the CRISPR system worked when they saw the red stems on their plants.

Credit: University of Georgia

One is called lignin, which traps sugars and starches used for biofuel production inside the tree's sturdy cell walls. The other is known as condensed tannin, and its presence in leaves and barks of the tree deters feeding by ruminants, such as deer, cattle, goats and sheep.

"CRISPR is a relatively new technology, but it could improve our ability to produce novel varieties of food crops, animal feeds and biofuel feedstocks," said the study's lead researcher C.J. Tsai, a Georgia Research Alliance Eminent Scholar in UGA's Warnell School of Forestry and Natural Resources and department of genetics. "Compared to some other gene editing techniques, this is incredibly simple, cost-effective and highly efficient, and it could serve as the foundation for a new era of discovery in plant genetics."

CRISPR technology is derived from a defense mechanism evolved by bacteria and other single-celled organisms. When a bacterium is attacked by an invader like a virus, it captures some of the virus's DNA, chops it up into pieces and incorporates a segment of the viral DNA into its own genome.

As the bacterium experiences more threats, it accumulates a bank of past infections in a special part of its genetic code called CRISPRs--short for clustered regularly interspaced short palindromic repeats--which act as a kind of immune system to protect against future invasions.

"This is a mechanism that evolved naturally, but we can borrow the bacteria's gene-cutting abilities and use it to edit very specific genes in all kinds of organisms, including plants and animals," said Tsai, who is also director of UGA's Plant Center. "It's like using a pair of scissors with GPS tracking to locate and snip out tiny bits of DNA--enough to nullify the gene you don't want, while leaving everything else unchanged."

Tsai credits her collaborator Thomas Jacobs, a former doctoral student in UGA's Institute of Plant Breeding, Genetics and Genomics, who adapted the CRISPR system for plant genome editing.

"Tom was a student in my class a few years back, and we were testing some of the gene silencing systems he developed for soybean in poplars," Tsai said. "It was a side project, also involving Xiaohong Zhou, a visiting doctoral student from Nanjing Forestry University, to test the new CRISPR system, and its high efficiency exceeded all of our expectations."

Every single poplar plant Zhou produced from the lignin-gene-targeting experiment had red-colored wood. Red stem is a known side effect of lignin modification found in natural mutants of maize, sorghum and pine, Tsai explained, so the researchers knew the CRISPR system worked when they saw the telltale red stems on their Populus plants.

"I was blown away by the results," Jacobs said. "This is one of the highest efficiencies ever reported, even in mouse and other animal models where the technology has been more extensively tested."

The modified Populus plants contained about 20 percent less lignin and 50 percent less condensed tannins than wild trees.

"We thought we knew what genes control lignin and condensed tannin production, and we did target the right genes, but the work showed us that there are other genes with overlapping roles," Tsai said. "The CRISPR system can now guide researchers seeking to identify these previously unknown gene family members."

###

The article on "Exploiting SNPs for biallelic CRISPR mutations in the outcrossing woody perennial Populus reveals 4-coumarate:CoA ligase specificity and redundancy" is available online at http://onlinelibrary.wiley.com/doi/10.1111/nph.13470/abstract.

Media Contact

C.J. Tsai
cjtsai@uga.edu
706-542-1271

 @universityofga

http://www.uga.edu 

C.J. Tsai | EurekAlert!

Further reports about: CRISPR DNA GPS tracking Tsai UGA bacteria bacterium biofuel production genes genetic code poplar specific genes

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>