Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UGA researchers develop first mouse model to study important aspect of Alzheimer’s

08.11.2011
Hirano bodies are almost indescribably tiny objects found in nerve cells of people suffering from conditions such as Alzheimer's, mad cow and Lou Gehrig's diseases. Yet for decades, researchers weren't sure if these structures helped cause the conditions or appeared after onset of the disease and had some other role.

Now, in research at the University of Georgia, a cellular biologist and his colleagues have found that Hirano bodies may play a protective role in the progression of neurodegenerative diseases such as Alzheimer's. And to find out why this may be happening, they have developed the world's first transgenic mouse model that has Hirano bodies, which will open new frontiers on how these poorly understood structures may be involved with some of humankind's most difficult-to-treat diseases.

"This work gives us a first view of the possible effects of Hirano bodies," said Marcus Fechheimer, Josiah Meigs Professor of cellular biology at UGA. "Now we know that Hirano bodies do not kill cells and are not toxic to mice. This new model will allow us to ask whether Hirano bodies have any effect on progression of disease in the brain."

While the research offers no cure for diseases such as Lou Gehrig's and mad cow, it does create a new area of research into understanding how these diseases operate in the human body and why they are so difficult to treat. And the problem is vast: the Alzheimer's Association reports there are 5.4 million sufferers of that disease in the U.S. alone.

The latest research announcing the transgenic mouse model for the formation of Hirano bodies was just published in the journal BMC Neuroscience. Co-authors with Fechheimer include Ruth Furukawa in the Fechheimer lab at UGA, as well as John Wagner and Michael Stramiello of the College of Veterinary Medicine, also at UGA; and Sangdeuk Ha, formerly of UGA and now with Beth Israel Deconess Medical Center at the Harvard Medical School.

Researchers actually discovered Hirano bodies decades ago but studying them in the lab proved so difficult that all the medical community could say was that the bodies were in some way associated with diseases such as Alzheimer's. It was clear that Hirano bodies are composed primarily of filaments of actin, a protein that participates in many important cellular processes. But no one understood their function.

Fechheimer's lab has been at the center of research on Hirano bodies for nearly a decade. In 2002, it reported for the first time a method of inducing the bodies to form. Interestingly, these "inclusions" also show up in autopsies of people suffering from diabetes, alcoholism and cancer. Hirano bodies also are associated with normal aging. So understanding what they do when neurological processes go off the rails could add an important step in understanding how diseases that cause so much suffering progress.

In a companion paper to the new mouse model research, published this year in the journal Neurobiology of Aging, Fechheimer and his co-authors discovered that Hirano bodies may actually act as a "corral" into which more damaging cellular molecules are "rounded up," thus actually promoting cell survival and possibly even slowing the impact of disease. The idea that Hirano bodies may actually help protect cells from such disorders as Alzheimer's came as a surprise to the team, though much research remains to be done to make sure exactly what is happening.

Co-authors on the paper in Neurobiology of Aging were Furukawa and Ha.

"The new results show us that Hirano bodies reduce cell death in a model system in a culture dish," said Fechheimer. "Now we need to know if Hirano bodies have any harmful or protective effects on cells in the brain in a mouse and in human patients. We developed the new mouse model to begin to answer this question."

The new model system will allow Fechheimer and his colleagues to study the impact of Hirano bodies in a living, mammalian system and to investigate the pathways for formation and degradation of the bodies. It will also allow them to test whether Hirano bodies promote or modulate the development of pathology or affect the deterioration of learning and memory that characterize both the human disease and the mouse models of these conditions.

The mouse model research was supported by grants from the Alzheimer's Association and the National Institutes of Health. The NIH and Alzheimer's Association, as well as the National Science Foundation also supported the research reported in Neurobiology of Aging.

Note to editors: An image of Fechheimer in his laboratory is available for download at http://multimedia.uga.edu/media/images/Fechheimer_Marcus.jpg

Marcus Fechheimer | EurekAlert!
Further information:
http://www.uga.edu

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>