Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UF study of lice DNA shows humans first wore clothes 170,000 years ago

A new University of Florida study following the evolution of lice shows modern humans started wearing clothes about 170,000 years ago, a technology which enabled them to successfully migrate out of Africa.

Principal investigator David Reed, associate curator of mammals at the Florida Museum of Natural History on the UF campus, studies lice in modern humans to better understand human evolution and migration patterns. His latest five-year study used DNA sequencing to calculate when clothing lice first began to diverge genetically from human head lice.

Funded by the National Science Foundation, the study is available online and appears in this month’s print edition of Molecular Biology and Evolution.

“We wanted to find another method for pinpointing when humans might have first started wearing clothing,” Reed said. “Because they are so well adapted to clothing, we know that body lice or clothing lice almost certainly didn’t exist until clothing came about in humans.”

The data shows modern humans started wearing clothes about 70,000 years before migrating into colder climates and higher latitudes, which began about 100,000 years ago. This date would be virtually impossible to determine using archaeological data because early clothing would not survive in archaeological sites.

The study also shows humans started wearing clothes well after they lost body hair, which genetic skin-coloration research pinpoints at about 1 million years ago, meaning humans spent a considerable amount of time without body hair and without clothing, Reed said.

“It’s interesting to think humans were able to survive in Africa for hundreds of thousands of years without clothing and without body hair, and that it wasn’t until they had clothing that modern humans were then moving out of Africa into other parts of the world,” Reed said.

Lice are studied because unlike most other parasites, they are stranded on lineages of hosts over long periods of evolutionary time. The relationship allows scientists to learn about evolutionary changes in the host based on changes in the parasite.

Applying unique data sets from lice to human evolution has only developed within the last 20 years, and provides information that could be used in medicine, evolutionary biology, ecology or any number of fields, Reed said.

“It gives the opportunity to study host-switching and invading new hosts — behaviors seen in emerging infectious diseases that affect humans,” Reed said.

A study of clothing lice in 2003 led by Mark Stoneking, a geneticist at the Max Planck Institute in Leipzig, Germany, estimated humans first began wearing clothes about 107,000 years ago. But the UF research includes new data and calculation methods better suited for the question.

“The new result from this lice study is an unexpectedly early date for clothing, much older than the earliest solid archaeological evidence, but it makes sense,” said Ian Gilligan, lecturer in the School of Archaeology and Anthropology at The Australian National University. “It means modern humans probably started wearing clothes on a regular basis to keep warm when they were first exposed to Ice Age conditions.”

The last Ice Age occurred about 120,000 years ago, but the study’s date suggests humans started wearing clothes in the preceding Ice Age 180,000 years ago, according to temperature estimates from ice core studies, Gilligan said. Modern humans first appeared about 200,000 years ago.

Because archaic hominins did not leave descendants of clothing lice for sampling, the study does not explore the possibility archaic hominins outside of Africa were clothed in some fashion 800,000 years ago. But while archaic humans were able to survive for many generations outside Africa, only modern humans persisted there until the present.

“The things that may have made us much more successful in that endeavor hundreds of thousands of years later were technologies like the controlled use of fire, the ability to use clothing, new hunting strategies and new stone tools,” Reed said.

Study co-authors were Melissa Toups of Indiana University and Andrew Kitchen of The Pennsylvania State University, both previously with UF. Co-author Jessica Light of Texas A&M University was formerly a post-doctoral fellow at the Florida Museum. The researchers completed the project with the help of Reed’s NSF Faculty Early Career Development Award, which is granted to researchers who exemplify the teacher-researcher role.

Danielle Torrent
Media Contact
Paul Ramey,, 352-273-2054
David Reed,, 352-273-1971

David Reed | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>