Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UF researchers find triggers in cells' transition from colitis to cancer

14.10.2009
University of Florida researchers have grown tumors in mice using cells from inflamed but noncancerous colon tissue taken from human patients, a finding that sheds new light on colon cancer and how it might be prevented.

Scientists observed that cancer stem cells taken from the gastrointestinal system in patients with a chronic digestive disease called ulcerative colitis will transform into cancerous tumors in mice.

The finding, now online and to be featured on the cover of the Thursday (Oct. 15) issue of Cancer Research, may help explain why patients with colitis have up to a 30-fold risk of developing colon cancer compared with people without the disease.

New understanding of the link between colitis and cancer could lead to diagnostic tests that would evaluate tissue taken from patients with colitis for signs of cancer stem cell development, thereby identifying patients who may be at greater risk for cancer.

"Ultimately it would be great if we could prevent colitis or treat colitis so it never gets to the cancerous stage," said UF colorectal surgeon Emina Huang, M.D., who is a member of the Program in Stem Cell Biology and Regenerative Medicine at UF's McKnight Brain Institute and the UF College of Medicine.

Although colonoscopy is very effective in screening and preventing colon cancer for most people, for patients with colitis no diagnostic tests work well because the inflamed tissue makes identification of precancerous changes difficult.

According to the Crohn's and Colitis Foundation of America, approximately 700,000 people have colitis in the United States. The National Cancer Institute estimates that cancer of the colon and rectum will claim the lives of about 50,000 people this year.

UF scientists gathered colitic tissue from humans and chemically screened it for colon cancer stem cells, also called tumor initiating cells. These cells were then isolated and monitored in mice to see if tumors would grow.

Huang said these findings shed light on that fact that it may not be just the cancer "seed" cell, but the "soil" – in this case inflamed colon tissue – that plays a role in the development of cancer.

"Is it the seed, is it the soil or is it their interaction?" she said. "We think probably both, but now we have a new way to look at it and a new method of attack."

B. Mark Evers, M.D., a professor and vice chair of surgery at the University of Kentucky College of Medicine, said the study emphasizes the emerging role of the surrounding inflammatory tumor microenvironment on tumor growth and subsequent metastasis.

"Dr. Huang and her group have identified a potentially important mechanism to explain why long-standing inflammation of the colon predisposes patients to the development of cancer," said Evers, who is director of the Lucille P. Markey Cancer Center in Lexington, Ky.

To further understand the role of the "seed" and "soil" interaction, UF researchers paired colon cancer stem cells with normal, colitic and cancerous human cells taken from the scaffolding layer of the large intestine. The cells were implanted into mice to analyze growth rates. The combination of tumor cells and normal scaffolding tissue cells grew at the slowest rate. Tumor cells paired with cancerous tissue grew at an intermediate rate, and tumor cells paired with the colitic tissue grew at the fastest rate.

Huang said they found heightened levels of two immune system hormones called interleukin-6 and interleukin-8 in the cells from the colitic and cancerous tissues, which had the faster growth rates.

When UF researchers decreased the expression of these hormones within the cells, the tumor growth drastically decreased. When the hormones returned, the tumors began to grow again.

"We don't understand the transition at the molecular level so we are trying to figure out what we can target to interfere, intervene or inhibit that transformation of the benign colitic cells," she said. "The thought is if we can create a therapy to decrease function of these hormones, we may be able to prevent or inhibit cancer growth."

Clinical trials looking at the role of one of these hormones in humans are under way in England, Huang said.

Jennifer Brindise | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>