Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UF researchers find triggers in cells' transition from colitis to cancer

14.10.2009
University of Florida researchers have grown tumors in mice using cells from inflamed but noncancerous colon tissue taken from human patients, a finding that sheds new light on colon cancer and how it might be prevented.

Scientists observed that cancer stem cells taken from the gastrointestinal system in patients with a chronic digestive disease called ulcerative colitis will transform into cancerous tumors in mice.

The finding, now online and to be featured on the cover of the Thursday (Oct. 15) issue of Cancer Research, may help explain why patients with colitis have up to a 30-fold risk of developing colon cancer compared with people without the disease.

New understanding of the link between colitis and cancer could lead to diagnostic tests that would evaluate tissue taken from patients with colitis for signs of cancer stem cell development, thereby identifying patients who may be at greater risk for cancer.

"Ultimately it would be great if we could prevent colitis or treat colitis so it never gets to the cancerous stage," said UF colorectal surgeon Emina Huang, M.D., who is a member of the Program in Stem Cell Biology and Regenerative Medicine at UF's McKnight Brain Institute and the UF College of Medicine.

Although colonoscopy is very effective in screening and preventing colon cancer for most people, for patients with colitis no diagnostic tests work well because the inflamed tissue makes identification of precancerous changes difficult.

According to the Crohn's and Colitis Foundation of America, approximately 700,000 people have colitis in the United States. The National Cancer Institute estimates that cancer of the colon and rectum will claim the lives of about 50,000 people this year.

UF scientists gathered colitic tissue from humans and chemically screened it for colon cancer stem cells, also called tumor initiating cells. These cells were then isolated and monitored in mice to see if tumors would grow.

Huang said these findings shed light on that fact that it may not be just the cancer "seed" cell, but the "soil" – in this case inflamed colon tissue – that plays a role in the development of cancer.

"Is it the seed, is it the soil or is it their interaction?" she said. "We think probably both, but now we have a new way to look at it and a new method of attack."

B. Mark Evers, M.D., a professor and vice chair of surgery at the University of Kentucky College of Medicine, said the study emphasizes the emerging role of the surrounding inflammatory tumor microenvironment on tumor growth and subsequent metastasis.

"Dr. Huang and her group have identified a potentially important mechanism to explain why long-standing inflammation of the colon predisposes patients to the development of cancer," said Evers, who is director of the Lucille P. Markey Cancer Center in Lexington, Ky.

To further understand the role of the "seed" and "soil" interaction, UF researchers paired colon cancer stem cells with normal, colitic and cancerous human cells taken from the scaffolding layer of the large intestine. The cells were implanted into mice to analyze growth rates. The combination of tumor cells and normal scaffolding tissue cells grew at the slowest rate. Tumor cells paired with cancerous tissue grew at an intermediate rate, and tumor cells paired with the colitic tissue grew at the fastest rate.

Huang said they found heightened levels of two immune system hormones called interleukin-6 and interleukin-8 in the cells from the colitic and cancerous tissues, which had the faster growth rates.

When UF researchers decreased the expression of these hormones within the cells, the tumor growth drastically decreased. When the hormones returned, the tumors began to grow again.

"We don't understand the transition at the molecular level so we are trying to figure out what we can target to interfere, intervene or inhibit that transformation of the benign colitic cells," she said. "The thought is if we can create a therapy to decrease function of these hormones, we may be able to prevent or inhibit cancer growth."

Clinical trials looking at the role of one of these hormones in humans are under way in England, Huang said.

Jennifer Brindise | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>