Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UF researchers find triggers in cells' transition from colitis to cancer

14.10.2009
University of Florida researchers have grown tumors in mice using cells from inflamed but noncancerous colon tissue taken from human patients, a finding that sheds new light on colon cancer and how it might be prevented.

Scientists observed that cancer stem cells taken from the gastrointestinal system in patients with a chronic digestive disease called ulcerative colitis will transform into cancerous tumors in mice.

The finding, now online and to be featured on the cover of the Thursday (Oct. 15) issue of Cancer Research, may help explain why patients with colitis have up to a 30-fold risk of developing colon cancer compared with people without the disease.

New understanding of the link between colitis and cancer could lead to diagnostic tests that would evaluate tissue taken from patients with colitis for signs of cancer stem cell development, thereby identifying patients who may be at greater risk for cancer.

"Ultimately it would be great if we could prevent colitis or treat colitis so it never gets to the cancerous stage," said UF colorectal surgeon Emina Huang, M.D., who is a member of the Program in Stem Cell Biology and Regenerative Medicine at UF's McKnight Brain Institute and the UF College of Medicine.

Although colonoscopy is very effective in screening and preventing colon cancer for most people, for patients with colitis no diagnostic tests work well because the inflamed tissue makes identification of precancerous changes difficult.

According to the Crohn's and Colitis Foundation of America, approximately 700,000 people have colitis in the United States. The National Cancer Institute estimates that cancer of the colon and rectum will claim the lives of about 50,000 people this year.

UF scientists gathered colitic tissue from humans and chemically screened it for colon cancer stem cells, also called tumor initiating cells. These cells were then isolated and monitored in mice to see if tumors would grow.

Huang said these findings shed light on that fact that it may not be just the cancer "seed" cell, but the "soil" – in this case inflamed colon tissue – that plays a role in the development of cancer.

"Is it the seed, is it the soil or is it their interaction?" she said. "We think probably both, but now we have a new way to look at it and a new method of attack."

B. Mark Evers, M.D., a professor and vice chair of surgery at the University of Kentucky College of Medicine, said the study emphasizes the emerging role of the surrounding inflammatory tumor microenvironment on tumor growth and subsequent metastasis.

"Dr. Huang and her group have identified a potentially important mechanism to explain why long-standing inflammation of the colon predisposes patients to the development of cancer," said Evers, who is director of the Lucille P. Markey Cancer Center in Lexington, Ky.

To further understand the role of the "seed" and "soil" interaction, UF researchers paired colon cancer stem cells with normal, colitic and cancerous human cells taken from the scaffolding layer of the large intestine. The cells were implanted into mice to analyze growth rates. The combination of tumor cells and normal scaffolding tissue cells grew at the slowest rate. Tumor cells paired with cancerous tissue grew at an intermediate rate, and tumor cells paired with the colitic tissue grew at the fastest rate.

Huang said they found heightened levels of two immune system hormones called interleukin-6 and interleukin-8 in the cells from the colitic and cancerous tissues, which had the faster growth rates.

When UF researchers decreased the expression of these hormones within the cells, the tumor growth drastically decreased. When the hormones returned, the tumors began to grow again.

"We don't understand the transition at the molecular level so we are trying to figure out what we can target to interfere, intervene or inhibit that transformation of the benign colitic cells," she said. "The thought is if we can create a therapy to decrease function of these hormones, we may be able to prevent or inhibit cancer growth."

Clinical trials looking at the role of one of these hormones in humans are under way in England, Huang said.

Jennifer Brindise | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Life Sciences:

nachricht 'Lipid asymmetry' plays key role in activating immune cells
20.02.2018 | Biophysical Society

nachricht New printing technique uses cells and molecules to recreate biological structures
20.02.2018 | Queen Mary University of London

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>