Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UF medicinal chemists modify sea bacteria byproduct for use as potential cancer drug

01.09.2011
Bounty of the sea: Blue-green bacteria produce potentially useful toxin
University of Florida researchers have modified a toxic chemical produced by tiny marine microbes and successfully deployed it against laboratory models of colon cancer.

Writing today in ACS Medicinal Chemistry Letters, UF medicinal chemists describe how they took a generally lethal byproduct of marine cyanobacteria and made it more specifically toxic — to cancer cells.

When the scientists gave low doses of the compound to mice with a form of colon cancer, they found that it inhibited tumor growth without the overall poisonous effect of the natural product. Even at relatively high doses, the agent was effective and safe.

"Sometimes nature needs a helping human hand to further optimize these products of evolution to treat human diseases," said Hendrik Luesch, Ph.D., an associate professor of medicinal chemistry at UF's College of Pharmacy. "Based on what we learned about apratoxins' mechanism of action, we knew this compound class had great potential for use in anticancer therapies; however, the natural product itself is too toxic to become a therapeutic."

The researchers synthesized several apratoxin compounds that were similar to the original except for slight differences in composition, designing one that proved to be extremely potent against the cancer cells in cultures and in mice, but without the overwhelming toxicity.

The compound acts as a single agent to reduce levels of two types of proteins that are targeted by cancer research labs around the world — growth factors, and enzymes called tyrosine kinases, which act as receptors for the growth factors.

Known as apratoxin S4, the compound strips colon cancer cells of their ability to both secrete and use naturally occurring factors that fuel growth — something that Luesch, postdoctoral chemist Oi-Yen Chen, Ph.D., and assistant scientist Yanxia Liu, Ph.D., say is a powerful "one-two punch" against mushrooming populations of cancer cells.

The trio describes apratoxin's dual action for the first time in today's online publication, although Luesch presented early findings in May at the New York Academy of Sciences.

"This is an extremely interesting discovery that may have the potential to lead to a novel drug, but an extraordinary amount of additional research is needed before we will know. We can hope," said David J. Newman, D.Phil., chief of the National Cancer Institute's Natural Products Branch, who was not involved in the research. "Luesch has found a novel compound and a novel mechanism of action that stops the secretion of the receptor and the growth factor — as far as I am aware, this mechanism has only been shown in apratoxin at this time. If nothing else, he has shown us a new way to kill tumor cells and has revealed a new chemistry, and those are important steps."

Apratoxin is produced by cyanobacteria, microbes that have evolved toxins to fend off predators and cope with harsh conditions in a marine environment. Collectively known as blue-green algae — a misnomer because the single-celled organisms are not algae or members of the plant kingdom — a wide variety of cyanobacteria species exists in both sea and freshwater environments.

Like plants, cyanobacteria convert sunlight into energy through a process known as photosynthesis. But where plants exclusively use a green pigment called chlorophyll to capture light to make food, cyanobacteria also use a bluish pigment called phycocyanin.

In addition, cyanobacteria have the unique ability to use respiration as well as photosynthesis to acquire energy, making these organisms tiny chemical factories capable of producing many as-yet unidentified molecules that may be useful for health applications.

"Marine cyanobacteria produce a huge diversity of compounds," said Luesch, who is also a member of the UF Shands Cancer Center. "About half of anticancer drugs are based on natural products. All but a couple of them are derived from terrestrial organisms, yet more than 70 percent of the Earth is covered by oceans, which presumably contain a number of therapeutic molecules with potentially novel biological activities. When we studied the biological effects of apratoxin, we predicted it would be particularly useful against colon cancer if we could engineer it to be more selective."

Chen synthesized the apratoxins, while Liu carried out the biology and pharmacology experiments. More lab work is required before a drug based on apratoxin can be tested in patients with colon cancer, but Luesch believes apratoxin S4 is the first candidate to show the needed tumor selectivity, antitumor effects and potency to be effective. The UF Research Opportunity Fund and the Bankhead-Coley Cancer Research Program supported the study.

John Pastor | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Life Sciences:

nachricht A room with a view - or how cultural differences matter in room size perception
25.04.2017 | Max-Planck-Institut für biologische Kybernetik

nachricht Studying a catalyst for blood cancers
25.04.2017 | University of Miami Miller School of Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Early organic carbon got deep burial in mantle

25.04.2017 | Earth Sciences

A room with a view - or how cultural differences matter in room size perception

25.04.2017 | Life Sciences

Warm winds: New insight into what weakens Antarctic ice shelves

25.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>