Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSF transgenic mouse mimics Parkinson’s earliest symptoms

04.05.2010
UCSF researchers have created the first transgenic mouse to display the earliest signs of Parkinson’s disease using the genetic mutation that is known to accompany human forms of the disease.

The mouse model, which expresses the same mutant proteins as human Parkinson’s patients, also displays early signs of constipation and other gastrointestinal problems that are a common harbinger of the disease in humans.

As a result, researchers say, these animals could serve as a means of investigating therapies for reversing the neurological dysfunction of the disease at its earliest stages.

The findings are featured as the cover story in the May 1, 2010 issue of the journal, “Human Molecular Genetics” and are available online at http://hmg.oxfordjournals.org/cgi/content/full/19/9/1633.

Researchers have long suspected that the neurological component of Parkinson’s, which causes tremors and stiffness among other symptoms, is actually a late-stage effect of a larger, systemic problem, according to UCSF geneticist Robert L. Nussbaum, MD, who was senior author on the paper.

“This new model validates that theory by mimicking what we know to be the genetic pathway leading to Parkinson’s, while also displaying the earliest symptoms that occur in humans,” said Nussbaum, who is the Holly Smith Distinguished Professor in Medicine and chief of the UCSF Division of Medical Genetics. “This will give us an important tool in identifying an early intervention for this devastating disease.”

Parkinson’s disease is the second most common neurodegenerative disease after Alzheimer’s, affecting 1.5 percent of adults over 55 years of age, and is typically characterized by motor disorders such as tremors, rigidity and postural instability.

Several non-motor abnormalities also frequently accompany Parkinson’s, including depression, sleep disorders and gastrointestinal dysfunction, the researchers explained. Gastrointestinal dysfunction is a particularly common symptom, seen in 80 to 90 percent of patients, and often precedes the motor-control symptoms by 10 to 15 years.

The UCSF mouse model is the first to display the full gastrointestinal symptoms as well, and is consistent with the progression of the disease in humans.

Nussbaum, in collaboration with former colleague Mihael Polymeropoulos, MD, had previously identified the first Mendelian-inherited form of Parkinson’s, which involves a mutation in the gene that produces alpha-synuclein proteins. Since then, he has been studying the rare, inherited forms of the disease to better understand the pathways and processes that may be involved in the more common, sporadic forms, and to create mouse models of the disease that can help in developing therapies.

The current model, based on that research, is significant in having the same genetic mutation that causes alpha-synuclein to misfold in an inherited form of Parkinson’s, causing the proteins to stick together to form insoluble fibrils in the nerve cells. Those clumps, known as Lewy bodies, are often associated with Parkinson’s, as well as with some other forms of dementia and multiple system atrophy.

Previous mouse models of the disease had relied on an over-expression of alpha-synuclein caused by a combination of human and mouse genes, according to the paper. The UCSF team created two new lines that only express the human form of the protein, with each line expressing one of two mutant forms that occur in human Parkinson’s patients, according to lead author Yien-Ming Kuo, PhD, in the UCSF Institute for Human Genetics.

In these lines, gastrointestinal dysfunction could be seen at three months of age, reached its highest severity at six months and persisted until 18 months, which follows the human course of the disease in sporadic Parkinson’s, according to the paper. That dysfunction occurred before there was any evidence of loss of smell and also before any evidence arose of pathological changes in the brain stem.

“This suggests that, at least in mice with the human proteins, these gastrointestinal symptoms are an intrinsic defect caused by the mutant protein, rather than being caused by abnormalities in brain function,” Kuo said. “That knowledge could eventually help us test for the disease long before it starts to cause neurodegenerative problems and prevent them from occurring.”

The work was funded by the National Institutes of Health, a grant from the Michael J. Fox Foundation, institutional funding from the UCSF Department of Medicine and Institute of Human Genetics, and the American Lebanese Syrian Associated Charities. The authors report no conflicts of interest on this research.

Co-authors on the paper include Zhishan Li and Michael D. Gershon, from the Department of Pathology and Cell Biology, Columbia University, New York, NY; Yun Jiao, Amar K. Pani and Richard J. Smeyne, of the Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN; Nathalie Gaborit and Benoit G. Bruneau, of the Gladstone Institute of Cardiovascular Disease, San Francisco, CA; Bonnie M. Orrison of the Genetic Disease Research Branch, National Institutes of Health, Bethesda, MD; and Benoit I. Giasson, of the Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care. For further information, visit ucsf.edu.

Kristen Bole | EurekAlert!
Further information:
http://www.ucsf.edu

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>