Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSF team develops “logic gates” to program bacteria as computers

09.12.2010
A team of UCSF researchers has engineered E. coli with the key molecular circuitry that will enable genetic engineers to program cells to communicate and perform computations.

The work builds into cells the same logic gates found in electronic computers and creates a method to create circuits by “rewiring” communications between cells. This system can be harnessed to turn cells into miniature computers, according to findings that will be reported in an upcoming issue of Nature and appear today in the advanced online edition at www.nature.com.

That, in turn, will enable cells to be programmed with more intricate functions for a variety of purposes, including agriculture and the production of pharmaceuticals, materials and industrial chemicals, according to Christopher A. Voigt, PhD, a synthetic biologist and associate professor in the UCSF School of Pharmacy’s Department of Pharmaceutical Chemistry who is senior author of the paper.

The most common electronic computers are digital, he explained; that is, they apply logic operations to streams of 1’s and 0’s to produce more complex functions, ultimately producing the software with which most people are familiar. These logic operations are the basis for cellular computation, as well.

“We think of electronic currents as doing computation, but any substrate can act like a computer, including gears, pipes of water, and cells,” Voigt said. “Here, we’ve taken a colony of bacteria that are receiving two chemical signals from their neighbors, and have created the same logic gates that form the basis of silicon computing.”

Applying this to biology will enable researchers to move beyond trying to understand how the myriad parts of cells work at the molecular level, to actually use those cells to perform targeted functions, according to Mary Anne Koda-Kimble, dean of the UCSF School of Pharmacy.

“This field will be transformative in how we harness biology for biomedical advances,” said Koda-Kimble, who championed Voigt’s recruitment to lead this field at UCSF in 2003. “It’s an amazing and exciting relationship to watch cellular systems and synthetic biology unfold before our eyes.”

The Nature paper describes how the Voigt team built simple logic gates out of genes and inserted them into separate E. coli strains. The gate controls the release and sensing of a chemical signal, which allows the gates to be connected among bacteria much the way electrical gates would be on a circuit board.

“The purpose of programming cells is not to have them overtake electronic computers,” explained Voigt, whom Scientist magazine named a “scientist to watch” in 2007 and whose work is included among the Scientist’s Top 10 Innovations of 2009. “Rather, it is to be able to access all of the things that biology can do in a reliable, programmable way.”

The research already has formed the basis of an industry partnership with Life Technologies, in Carlsbad, Cal., in which the genetic circuits and design algorithms developed at UCSF will be integrated into a professional software package as a tool for genetic engineers, much as computer-aided design is used in architecture and the development of advanced computer chips.

The automation of these complex operations and design choices will advance basic and applied research in synthetic biology. In the future, Voigt said the goal is to be able to program cells using a formal language that is similar to the programming languages currently used to write computer code.

The lead author of the paper is Alvin Tamsir, a student in the Biochemistry & Molecular Biology, Cell Biology, Developmental Biology, and Genetics (Tetrad) Graduate Program at UCSF. Jeffrey J. Tabor, PhD, in the UCSF School of Pharmacy, is a co-author.

The UCSF School of Pharmacy is the nation’s premier graduate-level school of pharmacy, the oldest pharmacy school in the western U.S., and a wellspring for discovery and innovation in the pharmaceutical sciences, education, and the pharmaceutical care of patients. For more information, please visit http://pharmacy.ucsf.edu/.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care.

Kristen Bole | EurekAlert!
Further information:
http://www.ucsf.edu

More articles from Life Sciences:

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

nachricht Big data approach to predict protein structure
27.03.2017 | Karlsruher Institut für Technologie (KIT)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Big data approach to predict protein structure

27.03.2017 | Life Sciences

Parallel computation provides deeper insight into brain function

27.03.2017 | Life Sciences

Weather extremes: Humans likely influence giant airstreams

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>