Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSF study identifies chemicals in pregnant women

14.01.2011
The bodies of virtually all U.S. pregnant women carry multiple chemicals, including some banned since the 1970s and others used in common products such as non-stick cookware, processed foods and personal care products, according to a new study from UCSF. The study marks the first time that the number of chemicals to which pregnant women are exposed has been counted.

Analyzing data for 163 chemicals, researchers detected polychlorinated biphenyls (PCBs), organochlorine pesticides, perfluorinated compounds (PFCs), phenols, polybrominated diphenyl ethers (PBDEs), phthalates, polycyclic aromatic hydrocarbons (PAHs) and perchlorate in 99 to 100 percent of pregnant women. Among the chemicals found in the study group were PBDEs, compounds used as flame retardants now banned in many states including California, and dichlorodiphenyltrichloroethane ( DDT), an organochlorine pesticide banned in the United States in 1972.

Bisphenol A (BPA), which makes plastic hard and clear, and is found in epoxy resins that are used to line the inside of metal food and beverage cans, was identified in 96 percent of the women surveyed. Prenatal exposure to BPA has been linked to adverse health outcomes, affecting brain development and increasing susceptibility to cancer later in life, according to the researchers.

Findings will be published in Environmental Health Perspectives on Jan. 14, and now are available on an embargoed basis.

The study was not designed to identify direct connections to adverse health outcomes.

"It was surprising and concerning to find so many chemicals in pregnant women without fully knowing the implications for pregnancy," said lead author Tracey Woodruff, PhD, MPH, director of the UCSF Program on Reproductive Health and the Environment.

"Several of these chemicals in pregnant women were at the same concentrations that have been associated with negative effects in children from other studies. In addition, exposure to multiple chemicals that can increase the risk of the same adverse health outcome can have a greater impact than exposure to just one chemical," said Woodruff, an associate professor in the UCSF Department of Obstetrics and Gynecology and Reproductive Sciences.

Exposure to chemicals during fetal development has been shown to increase the risk of adverse health consequences, including preterm birth and birth defects, childhood morbidity, and adult disease and mortality according to the research team. In addition, chemicals can cross the placenta and enter the fetus, and in other studies, a number of chemicals measured in maternal urine and serum have been found in amniotic fluid, cord blood and meconium, they state.

The researchers analyzed data for 268 pregnant women from the National Health and Nutritional Examination Survey (NHANES) 2003-2004, a nationally representative sample of the U.S. population.

"Our findings indicate several courses of action. First, additional research is needed to identify dominant sources of exposure to chemicals and how they influence our health, especially in reproduction," said Woodruff. "Second, while individuals can take actions in their everyday lives to protect themselves from toxins, significant, long-lasting change only will result from a systemic approach that includes proactive government policies."

Co-authors of the study are Ami R. Zota and Jackie M. Schwartz of the Program on Reproductive Health and the Environment, UCSF Department of Obstetrics and Gynecology and Reproductive Sciences.

Funding for the study was provided by the Pew Charitable Trusts and a grant from the Passport Science Innovation Fund.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care. For more information, visit http://www.ucsf.edu.

Follow UCSF on Twitter @ucsf /@ucsfscience

Video/b-roll interview with Tracey Woodruff, PhD, MPH available at http://www.youtube.com/watch?v=sFb81tHP_Tk

Karin Rush-Monroe | EurekAlert!
Further information:
http://www.ucsf.edu

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>