Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSF scientists illuminate how microRNAs drive tumor progression

21.09.2009
UCSF researchers have identified collections of tiny molecules known as microRNAs that affect distinct processes critical for the progression of cancer. The findings, they say, expand researchers’ understanding of the important regulatory function of microRNAs in tumor biology and point to new directions for future study and potential treatments.

The researchers refer to these microRNA collections as signatures, and their study results are reported in the September 15 issue of “Genes & Development.’’ The study, available online at http://genesdev.cshlp.org/, was led by the laboratory of Douglas Hanahan, PhD, an American Cancer Society Research Professor in the Department of Biochemistry and Biophysics at UCSF.

Approximately five percent of all known human genes encode, or produce, microRNAs, yet scientists are only now – nearly a decade after their discovery—beginning to unlock the mystery of their functions.

MicroRNAs are snippets of single-stranded RNAs that prevent a gene’s code from being translated from messenger RNA into proteins, which are essential for cell growth and development. Produced in the nucleus and released into the cytoplasm, they home in on messenger RNAs that possess a stretch that is complementary to their genetic sequence. When they locate them, they latch on, preventing the messenger RNA from being processed by the protein-making machines known as ribosomes. As such, microRNAs are able to ratchet down a cell’s production of a given protein.

Over the last several years, several groups have identified hundreds of microRNAs that are deregulated between normal tissue and tumors, however researchers only understand what a handful of these powerful regulators are doing to drive tumor formation.

“Virtually all cancers acquire approximately six distinct capabilities en route to tumor formation,” said lead author Peter Olson, PhD, a postdoctoral fellow in the Diabetes Center and Helen Diller Family Comprehensive Cancer Center at UCSF. “When a cancer researcher observes a gene or microRNA go awry, it can be challenging to understand how that microRNA impacts tumorigenesis.”

To home in on the question, the authors turned to a mouse model of pancreatic neuroendocrine tumors in which lesions go through discrete stages before culminating in invasive and metastatic carcinomas. In the three-year microRNA study, they found that cells in the mouse model developed and functioned normally but started to replicate uncontrollably at five weeks. Several weeks later, some pancreatic islets had become angiogenic (forming new blood vessels) – a step in the journey from a dormant state to a malignant state—though had not yet formed a tumor. By 10 weeks, a subset of angiogenic lesions had progressed to the tumor stage, and by week 16, a small percentage of mice had developed liver metastasis.

“This represents the spectrum of stages that we think are important for all tumors, including human disease,” said Olson.

By measuring the expression level of all known microRNA in pre-tumor stages, tumors and metastases, the authors were able to associate deregulated microRNAs with processes such as hyperproliferation, angiogenesis and metastasis.

Focusing on the metastatic signature, researchers found—in one of the most striking observations of the project—that tumors bore a startlingly divergent microRNA expression pattern compared to primary tumors. Moreover, a subset of primary tumors showed more similarity to metastases than to other primary tumors.

“If you can identify tumors that have an increased propensity to metastasize, then it would have a very important clinical application,” said Olson. “A lively debate in metastatic research has centered around whether primary tumor cells must suffer an additional mutation that endows that cell with a metastatic capability, or whether certain mutational combinations that are responsible for primary tumor formation also significantly increase the propensity of that cell to metastasize. These data provide evidence for the latter.’’

Olson conducted the research in the Hanahan laboratory. Hanahan is a member of the UCSF Helen Diller Family Comprehensive Cancer Center. He also is a professor at the UCSF Diabetes Center.

Also collaborating on the project were Anny Shai and Matthew G. Chun of the UCSF Diabetes Center and the UCSF Helen Diller Family Comprehensive Cancer Center, and Yucheng Wang and Eric K. Nakakura of the UCSF Helen Diller Family Comprehensive Cancer Center. Other co-authors include Jun Lu, Hao Zhang, and Todd R. Golub of the Broad Institute of MIT and Harvard, and Steven K. Libutti who is with the Tumor Angiogenesis Section, Surgery Branch, of the National Cancer Institute.

The research was supported in part by the National Cancer Institute, the American Cancer Society and the National Science Foundation.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care. For further information, please visit www.ucsf.edu.

Elizabeth Fernandez | EurekAlert!
Further information:
http://www.ucsf.edu

Further reports about: Cancer Diabetes RNA UCSF blood vessel messenger RNA mouse model primary tumor tumor formation tumor stage

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>