Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSF researchers identify key factor in transition from moderate to problem drinking

21.10.2014

MicroRNA lowers levels of protective protein in brain regions important for the development of alcohol addiction

A team of UC San Francisco researchers has found that a tiny segment of genetic material known as a microRNA plays a central role in the transition from moderate drinking to binge drinking and other alcohol use disorders.

Previous research in the UCSF laboratory of Dorit Ron, PhD, Endowed Chair of Cell Biology of Addiction in Neurology, has demonstrated that the level of a protein known as brain-derived neurotrophic factor, or BDNF, is increased in the brain when alcohol consumed in moderation. In turn, experiments in Ron's lab have shown, BDNF prevents the development of alcohol use disorders.

In the new study, Ron and first author Emmanuel Darcq, PhD, a former postdoctoral fellow now at McGill University in Canada, found that when mice consumed excessive amounts of alcohol for a prolonged period, there was a marked decrease in the amount of BDNF in the medial prefrontal cortex (mPFC), a brain region important for decision making. As reported in the October 21, 2014 online edition of Molecular Psychiatry, this decline was associated with a corresponding increase in the level of a microRNA called miR-30a-5p.

MicroRNAs lower the levels of proteins such as BDNF by binding to messenger RNA, the molecular middleman that carries instructions from genes to the protein-making machinery of the cell, and tagging it for destruction.

Ron and colleagues then showed that if they increased the levels of miR-30a-5p in the mPFC, BDNF was reduced, and the mice consumed large amounts of alcohol. When mice were treated with an inhibitor of miR-30a-5p, however, the level of BDNF in the mPFC was restored to normal and alcohol consumption was restored to normal, moderate levels.

"Our results suggest BDNF protects against the transition from moderate to uncontrolled drinking and alcohol use disorders," said Ron, senior author of the study and a professor in UCSF's Department of Neurology. "When there is a breakdown in this protective pathway, however, uncontrolled excessive drinking develops, and microRNAs are a possible mechanism in this breakdown. This mechanism may be one possible explanation as to why 10 percent of the population develop alcohol use disorders and this study may be helpful for the development of future medications to treat this devastating disease."

One reason many potential therapies for alcohol abuse have been unsuccessful is because they inhibit the brain's reward pathways, causing an overall decline in the experience of pleasure. But in the new study, these pathways continued to function in mice in which the actions of miR-30a-5p had been tamped down—the mice retained the preference for a sweetened solution over plain water that is seen in normal mice.

This result has significant implications for future treatments, Ron said. "In searching for potential therapies for alcohol abuse, it is important that we look for future medications that target drinking without affecting the reward system in general. One problem with current alcohol abuse medications is that patients tend to stop taking them because they interfere with the sense of pleasure."

###

Also participating in the study were postdoctoral fellows Vincent Warnault, PhD, and Feng Liu, PhD; former postdoctoral fellow Gabriel Mercado Besserer, PhD, and Khanhky Phamluong, research associate.

The study was supported by grants from the National Institute on Alcohol Abuse and Alcoholism and from the State of California for medical research on alcohol and substance abuse through UCSF.

UCSF is the nation's leading university exclusively focused on health. Now celebrating the 150th anniversary of its founding as a medical college, UCSF is dedicated to transforming health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care. It includes top-ranked graduate schools of dentistry, medicine, nursing and pharmacy; a graduate division with world-renowned programs in the biological sciences, a preeminent biomedical research enterprise and two top-tier hospitals, UCSF Medical Center and UCSF Benioff Children's Hospital San Francisco. Please visit http://www.ucsf.edu.

Pete Farley | Eurek Alert!

More articles from Life Sciences:

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

Quantum optical sensor for the first time tested in space – with a laser system from Berlin

23.01.2017 | Physics and Astronomy

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>