Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSF researchers identify key factor in transition from moderate to problem drinking

21.10.2014

MicroRNA lowers levels of protective protein in brain regions important for the development of alcohol addiction

A team of UC San Francisco researchers has found that a tiny segment of genetic material known as a microRNA plays a central role in the transition from moderate drinking to binge drinking and other alcohol use disorders.

Previous research in the UCSF laboratory of Dorit Ron, PhD, Endowed Chair of Cell Biology of Addiction in Neurology, has demonstrated that the level of a protein known as brain-derived neurotrophic factor, or BDNF, is increased in the brain when alcohol consumed in moderation. In turn, experiments in Ron's lab have shown, BDNF prevents the development of alcohol use disorders.

In the new study, Ron and first author Emmanuel Darcq, PhD, a former postdoctoral fellow now at McGill University in Canada, found that when mice consumed excessive amounts of alcohol for a prolonged period, there was a marked decrease in the amount of BDNF in the medial prefrontal cortex (mPFC), a brain region important for decision making. As reported in the October 21, 2014 online edition of Molecular Psychiatry, this decline was associated with a corresponding increase in the level of a microRNA called miR-30a-5p.

MicroRNAs lower the levels of proteins such as BDNF by binding to messenger RNA, the molecular middleman that carries instructions from genes to the protein-making machinery of the cell, and tagging it for destruction.

Ron and colleagues then showed that if they increased the levels of miR-30a-5p in the mPFC, BDNF was reduced, and the mice consumed large amounts of alcohol. When mice were treated with an inhibitor of miR-30a-5p, however, the level of BDNF in the mPFC was restored to normal and alcohol consumption was restored to normal, moderate levels.

"Our results suggest BDNF protects against the transition from moderate to uncontrolled drinking and alcohol use disorders," said Ron, senior author of the study and a professor in UCSF's Department of Neurology. "When there is a breakdown in this protective pathway, however, uncontrolled excessive drinking develops, and microRNAs are a possible mechanism in this breakdown. This mechanism may be one possible explanation as to why 10 percent of the population develop alcohol use disorders and this study may be helpful for the development of future medications to treat this devastating disease."

One reason many potential therapies for alcohol abuse have been unsuccessful is because they inhibit the brain's reward pathways, causing an overall decline in the experience of pleasure. But in the new study, these pathways continued to function in mice in which the actions of miR-30a-5p had been tamped down—the mice retained the preference for a sweetened solution over plain water that is seen in normal mice.

This result has significant implications for future treatments, Ron said. "In searching for potential therapies for alcohol abuse, it is important that we look for future medications that target drinking without affecting the reward system in general. One problem with current alcohol abuse medications is that patients tend to stop taking them because they interfere with the sense of pleasure."

###

Also participating in the study were postdoctoral fellows Vincent Warnault, PhD, and Feng Liu, PhD; former postdoctoral fellow Gabriel Mercado Besserer, PhD, and Khanhky Phamluong, research associate.

The study was supported by grants from the National Institute on Alcohol Abuse and Alcoholism and from the State of California for medical research on alcohol and substance abuse through UCSF.

UCSF is the nation's leading university exclusively focused on health. Now celebrating the 150th anniversary of its founding as a medical college, UCSF is dedicated to transforming health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care. It includes top-ranked graduate schools of dentistry, medicine, nursing and pharmacy; a graduate division with world-renowned programs in the biological sciences, a preeminent biomedical research enterprise and two top-tier hospitals, UCSF Medical Center and UCSF Benioff Children's Hospital San Francisco. Please visit http://www.ucsf.edu.

Pete Farley | Eurek Alert!

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>