Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UCSD scientists find gas pedal -- and brake -- for uncontrolled cell growth

Researchers at the University of California, San Diego School of Medicine have identified a new way to regulate the uncontrolled growth of blood vessels, a major problem in a broad range of diseases and conditions.

The findings are published in the online edition of Nature Medicine by David A. Cheresh, PhD, professor of pathology in the UC San Diego School of Medicine and associate director for translational research at the Moores UCSD Cancer Center, and colleagues at the cancer center and at the University of Michigan.

Blood vessels grow and expand in association with a number of diseases. In particular, new blood vessel growth (known as angiogenesis) occurs during the growth of tumors, enabling them to expand and metastasize or spread to other parts of the body.

Uncontrolled vascular growth can lead to vascular malformations and hemangiomas, which may become life-threatening. According to the National Cancer Institute, as many as 500 million people worldwide could benefit from therapies targeting angiogenesis.

Researchers have been trying to identify the switch mechanism that converts normal blood vessels from the resting state to the proliferative or diseased state. Cheresh, along with the study's first author Sudarshan Anand, also of the UCSD School of Medicine and the Moores Cancer Center, and colleagues discovered how an "angiogenic switch" turns on and developed a strategy to turn it back off.

During normal blood vessel formation or regeneration, endothelial cells forming the inner layer of blood vessels are exposed to factors in the local microenvironment that initiate the switch, causing blood vessels to begin to expand. Cheresh and colleagues identified a small microRNA (miR-132) responsible for controlling the switch.

Cheresh described the process in terms of a car and its brakes: "In tumor vessels or in hemangiomas, this particular microRNA is abundant and capable of maintaining extensive vascular growth. The effect is similar to a car that's speeding out of control because its gas pedal is stuck to the floor and its brakes aren't working."

The researchers designed a complementary microRNA, or anti-miR, that binds to and neutralizes the original microRNA. "This anti-miR therapy in effect restores functionality to the brake pedal and uncontrolled blood vessel growth comes to a halt," said Cheresh, who noted the new anti-miR turned off the angiogenic switch controlling disease severity in mouse models of cancer and of retinal disorders.

As part of their study, Cheresh and colleagues designed a nanoparticle that's capable of delivering the microRNA or the anti-microRNA directly to the diseased or proliferating blood vessels. This delivery vehicle ensures the therapeutic benefit is maximized while reducing the possibility of toxicity or side effects.

By delivering more of this microRNA, the scientists said, it may be possible to promote new blood vessel development in patients who have suffered tissue damage from stroke, heart attacks, or diabetes. Conversely, treating patients with the anti-miR might reduce or inhibit blood vessel development in tumors or help reduce inflammation.

Co-authors with Cheresh and Anand are Bharat K. Majeti, Lisette M. Acevedo, Eric A. Murphy, Rajesh Mukthavaram, Lea Scheppke, Miller Huang, David J. Shields, Jeffrey N. Lindquist and Sara M. Weis, all of the UC San Diego department of pathology and Moores Cancer Center; and Philip E. Lapinski and Philip D. King of the department of microbiology and immunology at the University of Michigan, Ann Arbor.

Scott LaFee | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>