Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD scientists find gas pedal -- and brake -- for uncontrolled cell growth

02.08.2010
Researchers at the University of California, San Diego School of Medicine have identified a new way to regulate the uncontrolled growth of blood vessels, a major problem in a broad range of diseases and conditions.

The findings are published in the online edition of Nature Medicine by David A. Cheresh, PhD, professor of pathology in the UC San Diego School of Medicine and associate director for translational research at the Moores UCSD Cancer Center, and colleagues at the cancer center and at the University of Michigan.

Blood vessels grow and expand in association with a number of diseases. In particular, new blood vessel growth (known as angiogenesis) occurs during the growth of tumors, enabling them to expand and metastasize or spread to other parts of the body.

Uncontrolled vascular growth can lead to vascular malformations and hemangiomas, which may become life-threatening. According to the National Cancer Institute, as many as 500 million people worldwide could benefit from therapies targeting angiogenesis.

Researchers have been trying to identify the switch mechanism that converts normal blood vessels from the resting state to the proliferative or diseased state. Cheresh, along with the study's first author Sudarshan Anand, also of the UCSD School of Medicine and the Moores Cancer Center, and colleagues discovered how an "angiogenic switch" turns on and developed a strategy to turn it back off.

During normal blood vessel formation or regeneration, endothelial cells forming the inner layer of blood vessels are exposed to factors in the local microenvironment that initiate the switch, causing blood vessels to begin to expand. Cheresh and colleagues identified a small microRNA (miR-132) responsible for controlling the switch.

Cheresh described the process in terms of a car and its brakes: "In tumor vessels or in hemangiomas, this particular microRNA is abundant and capable of maintaining extensive vascular growth. The effect is similar to a car that's speeding out of control because its gas pedal is stuck to the floor and its brakes aren't working."

The researchers designed a complementary microRNA, or anti-miR, that binds to and neutralizes the original microRNA. "This anti-miR therapy in effect restores functionality to the brake pedal and uncontrolled blood vessel growth comes to a halt," said Cheresh, who noted the new anti-miR turned off the angiogenic switch controlling disease severity in mouse models of cancer and of retinal disorders.

As part of their study, Cheresh and colleagues designed a nanoparticle that's capable of delivering the microRNA or the anti-microRNA directly to the diseased or proliferating blood vessels. This delivery vehicle ensures the therapeutic benefit is maximized while reducing the possibility of toxicity or side effects.

By delivering more of this microRNA, the scientists said, it may be possible to promote new blood vessel development in patients who have suffered tissue damage from stroke, heart attacks, or diabetes. Conversely, treating patients with the anti-miR might reduce or inhibit blood vessel development in tumors or help reduce inflammation.

Co-authors with Cheresh and Anand are Bharat K. Majeti, Lisette M. Acevedo, Eric A. Murphy, Rajesh Mukthavaram, Lea Scheppke, Miller Huang, David J. Shields, Jeffrey N. Lindquist and Sara M. Weis, all of the UC San Diego department of pathology and Moores Cancer Center; and Philip E. Lapinski and Philip D. King of the department of microbiology and immunology at the University of Michigan, Ann Arbor.

Scott LaFee | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Clock stars: Astrocytes keep time for brain, behavior
27.03.2017 | Washington University in St. Louis

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Electrical 'switch' in brain's capillary network monitors activity and controls blood flow

27.03.2017 | Health and Medicine

Clock stars: Astrocytes keep time for brain, behavior

27.03.2017 | Life Sciences

Sun's impact on climate change quantified for first time

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>