Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD scientists find gas pedal -- and brake -- for uncontrolled cell growth

02.08.2010
Researchers at the University of California, San Diego School of Medicine have identified a new way to regulate the uncontrolled growth of blood vessels, a major problem in a broad range of diseases and conditions.

The findings are published in the online edition of Nature Medicine by David A. Cheresh, PhD, professor of pathology in the UC San Diego School of Medicine and associate director for translational research at the Moores UCSD Cancer Center, and colleagues at the cancer center and at the University of Michigan.

Blood vessels grow and expand in association with a number of diseases. In particular, new blood vessel growth (known as angiogenesis) occurs during the growth of tumors, enabling them to expand and metastasize or spread to other parts of the body.

Uncontrolled vascular growth can lead to vascular malformations and hemangiomas, which may become life-threatening. According to the National Cancer Institute, as many as 500 million people worldwide could benefit from therapies targeting angiogenesis.

Researchers have been trying to identify the switch mechanism that converts normal blood vessels from the resting state to the proliferative or diseased state. Cheresh, along with the study's first author Sudarshan Anand, also of the UCSD School of Medicine and the Moores Cancer Center, and colleagues discovered how an "angiogenic switch" turns on and developed a strategy to turn it back off.

During normal blood vessel formation or regeneration, endothelial cells forming the inner layer of blood vessels are exposed to factors in the local microenvironment that initiate the switch, causing blood vessels to begin to expand. Cheresh and colleagues identified a small microRNA (miR-132) responsible for controlling the switch.

Cheresh described the process in terms of a car and its brakes: "In tumor vessels or in hemangiomas, this particular microRNA is abundant and capable of maintaining extensive vascular growth. The effect is similar to a car that's speeding out of control because its gas pedal is stuck to the floor and its brakes aren't working."

The researchers designed a complementary microRNA, or anti-miR, that binds to and neutralizes the original microRNA. "This anti-miR therapy in effect restores functionality to the brake pedal and uncontrolled blood vessel growth comes to a halt," said Cheresh, who noted the new anti-miR turned off the angiogenic switch controlling disease severity in mouse models of cancer and of retinal disorders.

As part of their study, Cheresh and colleagues designed a nanoparticle that's capable of delivering the microRNA or the anti-microRNA directly to the diseased or proliferating blood vessels. This delivery vehicle ensures the therapeutic benefit is maximized while reducing the possibility of toxicity or side effects.

By delivering more of this microRNA, the scientists said, it may be possible to promote new blood vessel development in patients who have suffered tissue damage from stroke, heart attacks, or diabetes. Conversely, treating patients with the anti-miR might reduce or inhibit blood vessel development in tumors or help reduce inflammation.

Co-authors with Cheresh and Anand are Bharat K. Majeti, Lisette M. Acevedo, Eric A. Murphy, Rajesh Mukthavaram, Lea Scheppke, Miller Huang, David J. Shields, Jeffrey N. Lindquist and Sara M. Weis, all of the UC San Diego department of pathology and Moores Cancer Center; and Philip E. Lapinski and Philip D. King of the department of microbiology and immunology at the University of Michigan, Ann Arbor.

Scott LaFee | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>