Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD discovery allows scientists for the first time to experimentally annotate genomes

11.11.2009
Over the last 20 years, the sequencing of the human genome, along with related organisms, has represented one of the largest scientific endeavors in the history of mankind.

The information collected from genome sequencing will provide the raw data for the field of bioinformatics, where computer science and biology meet. Since the publication of the first full genome sequence in the mid-1990s, scientists have been working to identify the genomic location of all the gene products involved in the complex biological processes in a single organism. However, they have only been able to identify a fraction of those locations. Until now.

Bioengineers at UC San Diego have made a breakthrough development that will now allow scientists to perform full delineation of the location and use of genomic elements. The researchers have discovered that multiple simultaneous genome-scale measurements are needed to identify all gene products, and to determine their cellular locations and interactions with the genome.

In a recent Nature Biotechnology paper, "The transcription unit architecture of the Escherichia coli genome," the researchers describe a four-step systems approach that integrates multiple genome-scale measurements on the basis of genetic information flow to identify the organizational elements and map them onto the genome sequence. The bioengineers have applied this approach to the E. coli genome to generate a detailed description of its transcrip¬tion unit architecture.

"What's important about this paper is it now enables us to experimentally annotate genomes," said Bernard Palsson, a UCSD bioengineering professor and co-author of the paper. "All this information gives us a fine resolution of the contents of a genome and location of its elements. This is a fine blueprint of a genetic makeup of the genome. We have been able to use genome scale computational models that have been developed at UCSD under the systems biology program, which have enabled us to compute organism designs with higher resolution or better accuracy, which has not been possible before. It takes a lot of the guesswork out of making an organism. Currently there is extensive trial and error in gene sequencing procedures. Hopefully this 'metastucture' of a genome that we have developed will eliminate that trial and error and will enable us to reach new metabolic designs faster with lower failure rates."

Palsson said there are many significant implications of this new finding, such as enhancing metabolic engineering (such as the engineering of microorganisms to make fuels and commodity chemicals).

The UCSD bionengineers combined several computation methods with information mapping in this research. "There are several high throughput methods developed recently like deep sequencing and micro array systems that we used," said Byung-Kwan Cho, a project scientist in the UCSD bioengineering department and the lead author of the Nature Biotechnology paper. "We wanted to integrate all the information into one format to describe the genome. We have genome sequences but we don't know what all of them are. When we sequenced the Human Genome we thought we knew everything but actually we don't know everything. There are lots of data generation techniques and a huge amount of data available. So we were able to map all of this information into one genome sequence.

"So far, scientists have been able to make chemicals to kill pathogenic strains but we haven't been as successful as we have wanted to be," Cho added. "By using this newly discovered information we may be able to design better drugs or medicines to kill pathogenic strains. That's the important point of this research – there is a huge amount of applications for this. The E. coli bacteria is just the beginning."

Andrea Siedsma | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>