Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD discovery allows scientists for the first time to experimentally annotate genomes

11.11.2009
Over the last 20 years, the sequencing of the human genome, along with related organisms, has represented one of the largest scientific endeavors in the history of mankind.

The information collected from genome sequencing will provide the raw data for the field of bioinformatics, where computer science and biology meet. Since the publication of the first full genome sequence in the mid-1990s, scientists have been working to identify the genomic location of all the gene products involved in the complex biological processes in a single organism. However, they have only been able to identify a fraction of those locations. Until now.

Bioengineers at UC San Diego have made a breakthrough development that will now allow scientists to perform full delineation of the location and use of genomic elements. The researchers have discovered that multiple simultaneous genome-scale measurements are needed to identify all gene products, and to determine their cellular locations and interactions with the genome.

In a recent Nature Biotechnology paper, "The transcription unit architecture of the Escherichia coli genome," the researchers describe a four-step systems approach that integrates multiple genome-scale measurements on the basis of genetic information flow to identify the organizational elements and map them onto the genome sequence. The bioengineers have applied this approach to the E. coli genome to generate a detailed description of its transcrip¬tion unit architecture.

"What's important about this paper is it now enables us to experimentally annotate genomes," said Bernard Palsson, a UCSD bioengineering professor and co-author of the paper. "All this information gives us a fine resolution of the contents of a genome and location of its elements. This is a fine blueprint of a genetic makeup of the genome. We have been able to use genome scale computational models that have been developed at UCSD under the systems biology program, which have enabled us to compute organism designs with higher resolution or better accuracy, which has not been possible before. It takes a lot of the guesswork out of making an organism. Currently there is extensive trial and error in gene sequencing procedures. Hopefully this 'metastucture' of a genome that we have developed will eliminate that trial and error and will enable us to reach new metabolic designs faster with lower failure rates."

Palsson said there are many significant implications of this new finding, such as enhancing metabolic engineering (such as the engineering of microorganisms to make fuels and commodity chemicals).

The UCSD bionengineers combined several computation methods with information mapping in this research. "There are several high throughput methods developed recently like deep sequencing and micro array systems that we used," said Byung-Kwan Cho, a project scientist in the UCSD bioengineering department and the lead author of the Nature Biotechnology paper. "We wanted to integrate all the information into one format to describe the genome. We have genome sequences but we don't know what all of them are. When we sequenced the Human Genome we thought we knew everything but actually we don't know everything. There are lots of data generation techniques and a huge amount of data available. So we were able to map all of this information into one genome sequence.

"So far, scientists have been able to make chemicals to kill pathogenic strains but we haven't been as successful as we have wanted to be," Cho added. "By using this newly discovered information we may be able to design better drugs or medicines to kill pathogenic strains. That's the important point of this research – there is a huge amount of applications for this. The E. coli bacteria is just the beginning."

Andrea Siedsma | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>