Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSB scientists show that female fruit flies can be 'too attractive' to males

09.12.2009
Females can be too attractive to the opposite sex –– too attractive for their own good –– say biologists at UC Santa Barbara. They found that, among fruit flies, too much male attention directed toward attractive females leads to smaller families and, ultimately, to a reduced rate of population-wide adaptive evolution.

In an article published in the December 8 issue of Public Library of Science Biology, the authors described their experiments on the sex lives of fruit flies.

"Can females be too good looking?" asks William Rice, biology professor at UCSB. "Can there be disadvantages to being attractive? The answer is yes: If you are too attractive, you get too much male attention, and that interferes with your ability to function biologically."

The authors explain that the term "good looking," among fruit flies, refers to something, like a large body. From the perspective of a male fly, a desirable mate is a female that is larger and can therefore produce more offspring.

"These larger females are disproportionately courted and harassed by males attempting to obtain matings," said Tristan A. F. Long, the study's first author. "When these males are 'choosy' with their courtship, there may be negative consequences to the species' ability to adaptively evolve."

According to the scientists, too much mating is harmful to the females because seminal fluid from the male has toxic side effects. Too much courtship can also hinder the female's ability to forage effectively.

"When they court the females, the males sing to them; they do this by vibrating their wings," said Rice. "They dance and sing at the same time. This might sound romantic, and it would be if it only happened once. But males are doing it all the time. This courtship is unrelenting –– like mosquitoes on a warm summer night –– as the male fruit flies try to persuade females to mate. The males are so persistent that they get them to mate almost every day."

In many species, females are frequently subject to intense courtship "harassment" from males attempting to obtain additional matings, according to the researchers. These coercive activities can result in attractive females becoming less fit to reproduce –– a factor that has a major effect on the entire population.

"We found that when harmful courtship behaviors were directed predominantly toward larger females of greater fecundity potential –– and away from smaller females, of lesser fecundity potential –– this resulted in an overall reduction in the variation of lifetime reproductive success of females in the population," said Long.

The male-mediated, persistent courtship bias can have important consequences for the ability of a population to adaptively change over time. If, for example, a female acquires a mutation that increases metabolic efficiency, allowing her to grow larger, and produce more offspring over her lifetime, this mutation should rapidly spread through the population. However, if the males get in the way of the biological success of these more attractive females, the mutation won't spread through the population as well as it might if males courted females indiscriminately.

The experiments clearly showed that the evolutionary adaptation of fruit flies is hindered by this mating situation. "This change in the distribution of fitness represents a previously unappreciated aspect of sexual selection –– one with important implications for the ability of beneficial genetic variation to spread through the gene pool, and ultimately for a species' capacity to adaptively evolve," Long explained.

Long was a Natural Sciences and Engineering Research Council of Canada (NSERC) postdoctoral fellow at UCSB at the time that he carried out the experiments designed with Rice. Long is currently a postdoctoral fellow with the University of Toronto in the Department of Ecology and Evolutionary Biology. The other authors are Alison Pischedda, a graduate student, and Andrew D. Stewart, a postdoctoral fellow, both of UCSB.

Gail Gallessich | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Life Sciences:

nachricht Kidney tumor: Genetic trigger discovered
18.06.2018 | Julius-Maximilians-Universität Würzburg

nachricht New type of photosynthesis discovered
18.06.2018 | Imperial College London

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>