Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSB scientists show that female fruit flies can be 'too attractive' to males

09.12.2009
Females can be too attractive to the opposite sex –– too attractive for their own good –– say biologists at UC Santa Barbara. They found that, among fruit flies, too much male attention directed toward attractive females leads to smaller families and, ultimately, to a reduced rate of population-wide adaptive evolution.

In an article published in the December 8 issue of Public Library of Science Biology, the authors described their experiments on the sex lives of fruit flies.

"Can females be too good looking?" asks William Rice, biology professor at UCSB. "Can there be disadvantages to being attractive? The answer is yes: If you are too attractive, you get too much male attention, and that interferes with your ability to function biologically."

The authors explain that the term "good looking," among fruit flies, refers to something, like a large body. From the perspective of a male fly, a desirable mate is a female that is larger and can therefore produce more offspring.

"These larger females are disproportionately courted and harassed by males attempting to obtain matings," said Tristan A. F. Long, the study's first author. "When these males are 'choosy' with their courtship, there may be negative consequences to the species' ability to adaptively evolve."

According to the scientists, too much mating is harmful to the females because seminal fluid from the male has toxic side effects. Too much courtship can also hinder the female's ability to forage effectively.

"When they court the females, the males sing to them; they do this by vibrating their wings," said Rice. "They dance and sing at the same time. This might sound romantic, and it would be if it only happened once. But males are doing it all the time. This courtship is unrelenting –– like mosquitoes on a warm summer night –– as the male fruit flies try to persuade females to mate. The males are so persistent that they get them to mate almost every day."

In many species, females are frequently subject to intense courtship "harassment" from males attempting to obtain additional matings, according to the researchers. These coercive activities can result in attractive females becoming less fit to reproduce –– a factor that has a major effect on the entire population.

"We found that when harmful courtship behaviors were directed predominantly toward larger females of greater fecundity potential –– and away from smaller females, of lesser fecundity potential –– this resulted in an overall reduction in the variation of lifetime reproductive success of females in the population," said Long.

The male-mediated, persistent courtship bias can have important consequences for the ability of a population to adaptively change over time. If, for example, a female acquires a mutation that increases metabolic efficiency, allowing her to grow larger, and produce more offspring over her lifetime, this mutation should rapidly spread through the population. However, if the males get in the way of the biological success of these more attractive females, the mutation won't spread through the population as well as it might if males courted females indiscriminately.

The experiments clearly showed that the evolutionary adaptation of fruit flies is hindered by this mating situation. "This change in the distribution of fitness represents a previously unappreciated aspect of sexual selection –– one with important implications for the ability of beneficial genetic variation to spread through the gene pool, and ultimately for a species' capacity to adaptively evolve," Long explained.

Long was a Natural Sciences and Engineering Research Council of Canada (NSERC) postdoctoral fellow at UCSB at the time that he carried out the experiments designed with Rice. Long is currently a postdoctoral fellow with the University of Toronto in the Department of Ecology and Evolutionary Biology. The other authors are Alison Pischedda, a graduate student, and Andrew D. Stewart, a postdoctoral fellow, both of UCSB.

Gail Gallessich | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>