Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSB scientists get glimpse of how the 'code' of life may have emerged

24.03.2011
A portion of the "code" of life has been unraveled by a UC Santa Barbara graduate student from the town of Jojutla, Mexico.

Annia Rodriguez worked with John Perona, professor in UCSB's Department of Chemistry and Biochemistry, to decipher intramolecular communication within a large RNA-protein enzyme responsible for expressing the genetic code for the amino acid glutamine.

To their surprise, the experiments by Rodriguez captured a partial glimpse of how the genetic coding of life may have emerged. The results of the study are published in the journal Structure, published by CELL.

Life is based on the ability of all living cells to convert the genetic information in DNA, into the specific sequences of amino acids that make up the proteins that are the cell's workhorses. The key reaction in this decoding process is the attachment of a particular amino acid to one end of a small RNA molecule known as a transfer RNA. The enzyme that catalyzes this amino acid-RNA attachment is the aminoacyl-tRNA synthetase.

... more about:
»RNA »amino acid »living cell
Rodriguez performed many laborious experiments in which she removed portions of the aminoacyl-tRNA synthetase that interact with the anticodon stem of the transfer RNA, far from the part of the enzyme that binds the amino acid. Using a biochemical approach known as rapid chemical quench kinetics, Rodriguez discovered that when she made these changes to the enzyme, the binding of the amino acid to the protein was strengthened, even though the amino acid binds far away from the positions where the changes were made.

"It is totally counterintuitive," said Perona. "Imagine if you had a car, and you took out a gear, and the car went faster. Why would you want that gear if it makes your car go slower?"

In all, Rodriguez found that separately removing seven different "gears" from a distant part of the molecule each caused the amino acid to bind more tightly to the aminoacyl-tRNA synthetase. Perona explained that this provides the first systematic analysis demonstrating long-range communication in an enzyme that depends on RNA for its function.

"So what we think is going on is that these enzyme-RNA interactions far from the amino acid binding site evolved together with the needs of the cell to respond to subtle cues from its environment – especially in terms of how much amino acid is available," said Perona. "It makes sense in terms of evolution."

Rodriguez is the first in her family to pursue a Ph.D., which she will complete this year. Now 28 years old, she began her career as a nurse in Cuernavaca, Mexico. Then she went on to obtain a B.S. in biochemical engineering at the Instituto Tecnológico de Zacatepec.

Graduation from her undergraduate program called for work at a research institution and she chose UCSB. Upon graduation, Rodriguez was offered a prestigious five-year scholarship with Mexico's Consejo Nacional de Ciencia y Technología (CONACYT) to continue her studies at UCSB.

Although her current research is not focused specifically on human health, Rodriguez said: "My interest in biochemistry started because I wanted to know the mechanisms by which drugs and medications worked inside the human body. I wanted to learn not just the signs and symptoms of disease, but how diseases are developed in a molecular level."

Gail Gallessich | EurekAlert!
Further information:
http://www.ucsb.edu

Further reports about: RNA amino acid living cell

More articles from Life Sciences:

nachricht Cells communicate in a dynamic code
19.02.2018 | California Institute of Technology

nachricht Studying mitosis' structure to understand the inside of cancer cells
19.02.2018 | Biophysical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>