Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSB Scientists Discover New Drug Target for Kidney Disease

27.04.2011
Two discoveries at UC Santa Barbara point to potential new drug therapies for patients with kidney disease. The findings are published in this week's issue of the Proceedings of the National Academy of Sciences.

Over 600,000 people in the U.S., and 12 million worldwide, are affected by the inherited kidney disease known as autosomal-dominant polycystic kidney disease, or ADPKD. The disease is characterized by the proliferation of cysts that eventually debilitate the kidneys, causing kidney failure in half of all patients by the time they reach age 50.

Currently, no treatment exists to prevent or slow cyst formation, and most ADPKD patients require kidney transplants or lifelong dialysis for survival, explained Thomas Weimbs, director of the laboratory where the discoveries were made. Weimbs is an associate professor in the Department of Molecular, Cellular and Developmental Biology and the Neuroscience Research Institute at UCSB.

First, Weimbs and his research team discovered a molecular mechanism that sheds light on the disease. The mechanism concerns polycystin-1, a protein that is mutated in ADPKD patients. The team discovered how this protein regulates a well-known transcription factor called STAT3. Transcription factors transcribe information from DNA to RNA, from specific genes. Second, the team discovered that STAT3 is strongly, and aberrantly, activated in polycystic kidneys.

"The clinical significance of these discoveries lies in the fact that STAT3 is also known to be aberrantly activated in many forms of cancer and is considered an important drug target for cancer therapy," said Weimbs. "Numerous STAT3 inhibitors are currently being developed and tested, and several experimental drugs are already available. Our results suggest that STAT3 activation is a driving force for the cyst growth that leads to polycystic kidneys in ADPKD. Therefore, STAT3 may be a highly promising drug target for the treatment of ADPKD."

Weimbs explained further that STAT3 is a signaling molecule that is activated in response to many different growth factors binding to specific receptors on the surface of kidney cells. In response to these growth factors hitting the cell, STAT3 is activated. That causes STAT3 to turn on the expression of certain genes. This activity causes the cells to proliferate, as they do in cancer.

"In polycystic kidney disease, we have strong proliferation, but it is similar to having benign tumors –– where the tumor stays in place," said Weimbs. "The cysts keep growing, but they do not metastasize or invade other tissues as do cancerous tumors. Polycystic kidneys are full of small, benign tumors or cysts. This is still very destructive, because eventually the disease will destroy the kidney."

The research team is currently testing STAT3 as a drug target in mice with ADPKD.

The first author of the paper is Jeffrey J. Talbot, a postdoctoral fellow in the Weimbs lab. The other co-authors from UCSB are Jonathan M. Shillingford, Shivakumar Vasanth, Nicholas Doerr, and Sambuddho Mukherjee. Additional co-authors are Terry Watnick, Johns Hopkins University School of Medicine; and Mike Kinter, Oklahoma Medical Research Foundation. The National Institutes of Health funded the research.

Gail Gallessich | EurekAlert!
Further information:
http://www.ucsb.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>