Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSB scientist identifies protein molecule used to maintain adult stem cells in fruit flies

23.04.2013
Understanding exactly how stem cells form into specific organs and tissues is the holy grail of regenerative medicine. Now a UC Santa Barbara researcher has added to that body of knowledge by determining how stem cells produce different types of "daughter" cells in Drosophila (fruit flies). The findings appear today in the Proceedings of the National Academy of Sciences.

Denise Montell, Duggan Professor of Molecular, Cellular and Developmental Biology at UCSB, and colleagues studied the ovaries of fruit flies in order to see stem cells in their natural environment. Because these organisms are excellent models for understanding stem cell biology, researchers were able to shed light on the earliest stages of follicle cell differentiation, a previously poorly understood area of developmental biology.

"It is clear that the fundamental principles that control cell behavior in simple animals are conserved and control the behavior of our cells as well," she said. "There is so much we can learn by studying simple organisms."

Using a nuclear protein expressed in follicle stem cells (FSCs), the researchers found that castor, which plays an important role in specifying which types of brain cells are produced during embryonic development, also helps maintain FSCs throughout the life of the animal. "Having identified this important protein molecule in fruit flies, we can test whether the human version of the protein is important for stem cells and their daughters as well," said Montell. "The more we know about the molecules that govern stem cell behavior, the closer we will get to controlling these cells."

Her research team placed the evolutionarily conserved castor (Cas) gene, which encodes a zinc finger protein, in a genetic circuit with two other evolutionarily conserved genes, hedgehog (Hh) and eyes absent (Eya), to determine the fates of specific cell progeny (daughters). What's more, they identified Cas as a critical, tissue-specific target of Hh signaling, which not only plays a key role in maintaining follicle stem cells but also assists in the diversification of their progeny.

The study also shows that complementary patterns of Cas and Eya reveal the gradual differentiation of polar and stalk precursor cells at the earliest stages of their development. In addition, it provides a marker for cell fates and insight into the molecular and cellular mechanisms by which FSC progeny diverge into distinct fates.

Follicle cells undergo a binary choice during early differentiation. Those that turn into specialized cells found at the poles of egg chambers go on to make two cell types: polar and stalk. The three genes, Cas, Eya and Hh, work in various combinations, sometimes repressively, to determine which types of cells are formed. Cas is required for polar and stalk cell fate specification, while Eya is a negative regulator of these cells' fate. Hh is necessary for Cas to be expressed, and Hh signaling is essential to repress Eya.

"If you just had one of these markers, it was hard to tell what's going on," explained Montell. "All the cells looked the same and you had no idea when or how the process occurred. But now we can actually see how the cells acquire different identities."

Hh also plays many roles in embryonic development, adult homeostasis, birth defects, and cancer. Hh antagonists are currently in clinical trials for the treatment of several types of cancer. However, Hh signaling is important in so many different cell types and tissues that systemic delivery of such inhibitors may cause serious side effects. Therefore identifying the essential, tissue-specific effectors of Hh has the potential to lead to the identification of more specific therapeutic targets.

Someday, targeted inhibition of Hh signaling may be effective in the treatment and prevention of many types of human cancers.

Julie Cohen | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>