Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSB researchers find a way to detect stealthy, 'hypervirulent' Salmonella strains

13.04.2012
A recent discovery of "hypervirulent" Salmonella bacteria has given UC Santa Barbara researchers Michael Mahan and Douglas Heithoff a means to potentially prevent food poisoning outbreaks from these particularly powerful strains.

Their findings, in a paper titled "Intraspecies Variation in the Emergence of Hyperinfectious Bacterial Strains in Nature," have been published in the journal PLoS Pathogens.


Salmonella typhimurium (red) invades cultured human cells in this color-enhanced scanning electron micrograph. Credit: Rocky Mountain Laboratories, NIAID, NIH

Salmonella is the most common cause of infection, hospitalization, and death due to foodborne illness in the U.S. This burden may continue to worsen due to the emergence of new strains that would tax current health-control efforts. To address this problem, researchers sought out –– and found –– hypervirulent strains that present a potential risk to food safety and the livestock industry.

An international team of scientists –– which also included Robert Sinsheimer and William Shimp from UCSB; Yi Xie and Bart Weimer from UC Davis; and John House from University of Sydney, Australia –– conducted a global search for hypervirulent Salmonella strains. They were found among isolates derived from livestock, and rendered current vaccines obsolete.

Bacteria behave like a Trojan Horse, exposing their weapons only after initiating infection. "These strains exhibit this behavior in the extreme –– essentially having a '5th gear' they can switch to during infection," said Heithoff, lead author of the paper.

Previous efforts to find hypervirulent strains were unsuccessful since bacteria behave much like their less-virulent cousins after environmental exposure. "The trick was to assess their virulence during infection –– before they switch back to a less-virulent state in the lab," said Professor Mahan.

Now that researchers know what to look for, they are developing methods to rapidly detect and discriminate the more harmful strains from their less-virulent cousins. The strategy is aided by a special medium utilized by the researchers that forces the bacteria to reveal their weapons in the laboratory –– the first step in the design of therapeutics to combat them.

Humans usually get Salmonella food poisoning from eating contaminated beef, chicken, or eggs. However, animal waste can contaminate fields where fruits, nuts, and vegetables are grown, thus posing a particular health concern for vegetarians. The threat is exacerbated when these foods are not cooked. Salmonella control efforts are expensive –– recent estimates place this cost up to $14.6 billion annually in the U.S.

As hypervirulent strains pose a potential risk to human and animal health, mitigation efforts warrant researchers' careful attention. "Now that we have identified the problem –– and potential solutions –– we just need to get to work," Heithoff said.

This research was launched with support from The G. Harold & Leila Y. Mathers Foundation, which then leveraged additional funding from the U.S. Department of Agriculture, National Institutes of Health, U.S. Army, and Santa Barbara Cottage Hospital Research Program.

To read the paper, visit: http://dx.plos.org/10.1371/journal.ppat.1002647

Sonia Fernandez | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>