Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSB researchers find a way to detect stealthy, 'hypervirulent' Salmonella strains

13.04.2012
A recent discovery of "hypervirulent" Salmonella bacteria has given UC Santa Barbara researchers Michael Mahan and Douglas Heithoff a means to potentially prevent food poisoning outbreaks from these particularly powerful strains.

Their findings, in a paper titled "Intraspecies Variation in the Emergence of Hyperinfectious Bacterial Strains in Nature," have been published in the journal PLoS Pathogens.


Salmonella typhimurium (red) invades cultured human cells in this color-enhanced scanning electron micrograph. Credit: Rocky Mountain Laboratories, NIAID, NIH

Salmonella is the most common cause of infection, hospitalization, and death due to foodborne illness in the U.S. This burden may continue to worsen due to the emergence of new strains that would tax current health-control efforts. To address this problem, researchers sought out –– and found –– hypervirulent strains that present a potential risk to food safety and the livestock industry.

An international team of scientists –– which also included Robert Sinsheimer and William Shimp from UCSB; Yi Xie and Bart Weimer from UC Davis; and John House from University of Sydney, Australia –– conducted a global search for hypervirulent Salmonella strains. They were found among isolates derived from livestock, and rendered current vaccines obsolete.

Bacteria behave like a Trojan Horse, exposing their weapons only after initiating infection. "These strains exhibit this behavior in the extreme –– essentially having a '5th gear' they can switch to during infection," said Heithoff, lead author of the paper.

Previous efforts to find hypervirulent strains were unsuccessful since bacteria behave much like their less-virulent cousins after environmental exposure. "The trick was to assess their virulence during infection –– before they switch back to a less-virulent state in the lab," said Professor Mahan.

Now that researchers know what to look for, they are developing methods to rapidly detect and discriminate the more harmful strains from their less-virulent cousins. The strategy is aided by a special medium utilized by the researchers that forces the bacteria to reveal their weapons in the laboratory –– the first step in the design of therapeutics to combat them.

Humans usually get Salmonella food poisoning from eating contaminated beef, chicken, or eggs. However, animal waste can contaminate fields where fruits, nuts, and vegetables are grown, thus posing a particular health concern for vegetarians. The threat is exacerbated when these foods are not cooked. Salmonella control efforts are expensive –– recent estimates place this cost up to $14.6 billion annually in the U.S.

As hypervirulent strains pose a potential risk to human and animal health, mitigation efforts warrant researchers' careful attention. "Now that we have identified the problem –– and potential solutions –– we just need to get to work," Heithoff said.

This research was launched with support from The G. Harold & Leila Y. Mathers Foundation, which then leveraged additional funding from the U.S. Department of Agriculture, National Institutes of Health, U.S. Army, and Santa Barbara Cottage Hospital Research Program.

To read the paper, visit: http://dx.plos.org/10.1371/journal.ppat.1002647

Sonia Fernandez | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>