Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSB researcher shows microplastic transfers chemicals, impacting health

03.12.2013
Study demonstrates plastic ingestion delivers pollutants and additives into animal tissue

With global production of plastic exceeding 280 metric tons every year, a fair amount of the stuff is bound to make its way to the natural environment. However, until now researchers haven't known whether ingested plastic transfers chemical additives or pollutants to wildlife.


A lugworm illustration from the National Encyclopedia published in London in 1881.

Credit: UCSB

A new study conducted by UC Santa Barbara's National Center for Ecological Analysis and Synthesis (NCEAS) shows that toxic concentrations of pollutants and additives enter the tissue of animals that have eaten microplastic. The findings are published today in Current Biology.

Lead author Mark Anthony Browne, a postdoctoral fellow at NCEAS, had two objectives when the study commenced: to look at whether chemicals from microplastic move into the tissues of organisms; and to determine any impacts on the health and the functions that sustain biodiversity. Microplastics are micrometer-size pieces that have eroded from larger plastic fragments, from fibers from washing clothing or from granules of plastic added to cleaning products. Microplastics are then consumed by a variety of animals, beginning with the bottom of the food chain. These tiny bits of plastic act like magnets, attracting pollutants out of the environment to attach to the plastic.

"The work is important because current policy in the United States and abroad considers microplastic as non-hazardous," Browne said. "Yet our work shows that large accumulations of microplastic have the potential to impact the structure and functioning of marine ecosystems."

Browne ran laboratory experiments with colleagues in the United Kingdom in which they exposed lugworms (Arenicola marina) to sand with 5 percent microplastic (polyvinylchloride) that also contained common chemical pollutants (nonylphenol, phenanthrene) and additives (triclosan, PBDE-47). Results showed that pollutants and additives from ingested microplastic were present in the worms' tissues at concentrations that compromise key functions that normally sustain health and biodiversity.

"In our study, additives, such as triclosan (an antimicrobial), that are incorporated into plastics during manufacture caused mortality and diminished the ability of the lugworms to engineer sediments," Browne said. "Pollutants on microplastics also increased the vulnerability of lugworms to pathogens while the plastic itself caused oxidative stress."

As test subjects, lugworms were not chosen at random. They are found in the United States and Europe, where they comprise up to 32 percent of the mass of organisms living on some shores, and are consumed by birds and fish and used as bait by fishermen. When the worms feed, they strip the sediment of silt and organic matter, giving rise to a unique and diverse number of species. Consequently, governments use this species to test the safety of chemicals that are discharged in marine habitats.

"They also suffer from mass mortalities during the summer," Browne said of the worms. "In the areas where a lot of the mortalities occurred, there has been extensive urban development so some mass mortalities could be potentially tied to plastic. On a hot summer's day when the tide is out, these organisms cook slightly because their hydrogen peroxide levels increase. And we found that the plastic itself reduces the capacity of antioxidants to mop up the hydrogen peroxide."

Although sand transferred larger concentrations of pollutants — up to 250 percent — into the worm's tissues, pollutants and additives from microplastic accumulated in the gut at concentrations between 326 percent and 3,770 percent greater than those in experimental sediments.

The pollutant nonylphenol from microplastic or sand suppressed immune function by more than 60 percent. Triclosan from microplastic diminished the ability of worms to engineer sediments and caused mortality, each by more than 55 percent. Triclosan, an antibacterial additive, has been found in animal studies to alter hormone regulation. Microplastic also increased the worms' susceptibility to oxidative stress by more than 30 percent.

These chemicals are known as priority pollutants, chemicals that governments around the world have agreed are the most persistently bioaccumulative and toxic. Previous work conducted by Browne and his colleagues showed that about 78 percent of the chemicals recognized by the U.S. Environmental Protection Agency are associated with microplastic pollution.

"We've known for a long time now that these types of chemicals transfer into humans from packaged goods," Browne said. "But for more than 40 years the bit that the scientists and policymakers didn't have was whether or not these particles of plastic can actually transfer chemicals into wildlife and damage the health of the organism and its ability to sustain biodiversity. That's what we really nailed with the study."

Julie Cohen | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>