Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSB researcher shows microplastic transfers chemicals, impacting health

03.12.2013
Study demonstrates plastic ingestion delivers pollutants and additives into animal tissue

With global production of plastic exceeding 280 metric tons every year, a fair amount of the stuff is bound to make its way to the natural environment. However, until now researchers haven't known whether ingested plastic transfers chemical additives or pollutants to wildlife.


A lugworm illustration from the National Encyclopedia published in London in 1881.

Credit: UCSB

A new study conducted by UC Santa Barbara's National Center for Ecological Analysis and Synthesis (NCEAS) shows that toxic concentrations of pollutants and additives enter the tissue of animals that have eaten microplastic. The findings are published today in Current Biology.

Lead author Mark Anthony Browne, a postdoctoral fellow at NCEAS, had two objectives when the study commenced: to look at whether chemicals from microplastic move into the tissues of organisms; and to determine any impacts on the health and the functions that sustain biodiversity. Microplastics are micrometer-size pieces that have eroded from larger plastic fragments, from fibers from washing clothing or from granules of plastic added to cleaning products. Microplastics are then consumed by a variety of animals, beginning with the bottom of the food chain. These tiny bits of plastic act like magnets, attracting pollutants out of the environment to attach to the plastic.

"The work is important because current policy in the United States and abroad considers microplastic as non-hazardous," Browne said. "Yet our work shows that large accumulations of microplastic have the potential to impact the structure and functioning of marine ecosystems."

Browne ran laboratory experiments with colleagues in the United Kingdom in which they exposed lugworms (Arenicola marina) to sand with 5 percent microplastic (polyvinylchloride) that also contained common chemical pollutants (nonylphenol, phenanthrene) and additives (triclosan, PBDE-47). Results showed that pollutants and additives from ingested microplastic were present in the worms' tissues at concentrations that compromise key functions that normally sustain health and biodiversity.

"In our study, additives, such as triclosan (an antimicrobial), that are incorporated into plastics during manufacture caused mortality and diminished the ability of the lugworms to engineer sediments," Browne said. "Pollutants on microplastics also increased the vulnerability of lugworms to pathogens while the plastic itself caused oxidative stress."

As test subjects, lugworms were not chosen at random. They are found in the United States and Europe, where they comprise up to 32 percent of the mass of organisms living on some shores, and are consumed by birds and fish and used as bait by fishermen. When the worms feed, they strip the sediment of silt and organic matter, giving rise to a unique and diverse number of species. Consequently, governments use this species to test the safety of chemicals that are discharged in marine habitats.

"They also suffer from mass mortalities during the summer," Browne said of the worms. "In the areas where a lot of the mortalities occurred, there has been extensive urban development so some mass mortalities could be potentially tied to plastic. On a hot summer's day when the tide is out, these organisms cook slightly because their hydrogen peroxide levels increase. And we found that the plastic itself reduces the capacity of antioxidants to mop up the hydrogen peroxide."

Although sand transferred larger concentrations of pollutants — up to 250 percent — into the worm's tissues, pollutants and additives from microplastic accumulated in the gut at concentrations between 326 percent and 3,770 percent greater than those in experimental sediments.

The pollutant nonylphenol from microplastic or sand suppressed immune function by more than 60 percent. Triclosan from microplastic diminished the ability of worms to engineer sediments and caused mortality, each by more than 55 percent. Triclosan, an antibacterial additive, has been found in animal studies to alter hormone regulation. Microplastic also increased the worms' susceptibility to oxidative stress by more than 30 percent.

These chemicals are known as priority pollutants, chemicals that governments around the world have agreed are the most persistently bioaccumulative and toxic. Previous work conducted by Browne and his colleagues showed that about 78 percent of the chemicals recognized by the U.S. Environmental Protection Agency are associated with microplastic pollution.

"We've known for a long time now that these types of chemicals transfer into humans from packaged goods," Browne said. "But for more than 40 years the bit that the scientists and policymakers didn't have was whether or not these particles of plastic can actually transfer chemicals into wildlife and damage the health of the organism and its ability to sustain biodiversity. That's what we really nailed with the study."

Julie Cohen | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

White graphene makes ceramics multifunctional

16.01.2018 | Materials Sciences

Breaking bad metals with neutrons

16.01.2018 | Materials Sciences

ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records

16.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>