Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UCR researcher identifies mechanism malaria parasite uses to spread among red blood cells

Discovery could lead to new drugs for combating spread of deadly disease

Malaria remains one of the most deadly infectious diseases. Yet, how Plasmodium, the malaria parasite, regulates its infectious cycle has remained an enigma despite decades of rigorous research.

But now a research team led by a cell biologist at the University of California, Riverside has identified a mechanism by which Plasmodium intensively replicates itself in human blood to spread the disease.

"If this mechanism can be stopped," said Karine Le Roch, an assistant professor of cell biology and neuroscience, who led the research, "Plasmodium replication would cease or be severely inhibited, thus controlling the spread of malaria."

In the cells of eukaryotes, such as the unicellular Plasmodium and humans, DNA, which can be as long as two meters, is closely packed to fit into the cell's tiny nucleus. Huge complex proteins called nucleosomes facilitate this DNA compaction so that eventually the DNA is coiled in an ordered manner to form chromosomes.

Made up of histone, a kind of protein, the nucleosomes are repeating units around which the double helix of DNA gets wrapped and vast amounts of genetic information get organized.

In trying to understand how the malaria parasite multiplies in red blood cells, Le Roch's team found that in Plasmodium a kind of "histone crash" takes place – a massive breakdown of histone that explains how the parasite can replicate extensively its DNA and coding gene in human red blood cells.

For cell multiplication to occur, the genes in a DNA strand need to first be transcribed and translated (converted) into protein. For this transcription to take place, however, the nucleosomes must first get evicted (removed), a process that opens up the DNA strand to give special "transcription factors" full access to the genes. The transcription factors then convert these genes into protein.

While in humans such eviction of nucleosomes is specific to only some sections of the DNA strand and performed only when needed, in Plasmodium the situation is vastly different.

Le Roch's experiments in the lab show that 18 hours after Plasmodium enters a red blood cell, a huge eviction of nucleosomes occurs in the Plasmodium DNA. Gene transcription throughout the genome follows; after multiplication into up to 32 daughter cells, the newly-formed parasites are ready to exit the red blood cell and invade new ones about 18 hours later.

"We found in our experiments that histones are massively evicted everywhere in the Plasmodium genome, resulting in most of the Plasmodium genes to be transcribed at once," Le Roch said. "If we can find a candidate enzyme that can regulate this massive histone eviction, we could halt or greatly limit Plasmodium replication."

Study results appear this month in the journal Genome Research.

"Dr. Le Roch's findings document a global mechanism mediating significant changes in gene expression as the parasites transition through developmental stages in the human hosts," said Anthony A. James, a distinguished professor of microbiology & molecular genetics and molecular biology & biochemistry at UC Irvine, who was not involved in the research. "As well as being a major basic discovery, this provides a basis for probing the mechanisms for novel drug development."

Le Roch obtained her master's degree in parasitology at the University of Lille II and the University of Oxford, in 1997. She completed her doctorate in 2001 at the University of Paris VI, working on the cell cycle regulation of Plasmodium. In 2001, she joined the Scripps Research Institute, San Diego, Calif., to carry out the functional analysis of the Plasmodium genome using microarray technologies. In 2004, she joined the Genomics Institute of the Novartis Research Foundation, Calif., where she developed the malaria drug discovery program. She joined UCR in 2006.

Le Roch was joined in the study by Nadia Ponts (the first author of the research paper), Elena Harris, Jacques Prudhomme, Glenn Hicks and Stefano Lonardi at UCR; and Ivan Wick, Colleen Eckhardt-Ludka and Gary Hardiman at UC San Diego.

UCR startup funds supported the study.

The University of California, Riverside ( is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment of about 18,000 is expected to grow to 21,000 students by 2020. The campus is planning a medical school and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Graduate Center. The campus has an annual statewide economic impact of more than $1 billion.

A broadcast studio with fiber cable to the AT&T Hollywood hub is available for live or taped interviews. To learn more, call (951) UCR-NEWS.

Iqbal Pittalwala | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>