Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCR researcher identifies mechanism malaria parasite uses to spread among red blood cells

19.02.2010
Discovery could lead to new drugs for combating spread of deadly disease

Malaria remains one of the most deadly infectious diseases. Yet, how Plasmodium, the malaria parasite, regulates its infectious cycle has remained an enigma despite decades of rigorous research.

But now a research team led by a cell biologist at the University of California, Riverside has identified a mechanism by which Plasmodium intensively replicates itself in human blood to spread the disease.

"If this mechanism can be stopped," said Karine Le Roch, an assistant professor of cell biology and neuroscience, who led the research, "Plasmodium replication would cease or be severely inhibited, thus controlling the spread of malaria."

In the cells of eukaryotes, such as the unicellular Plasmodium and humans, DNA, which can be as long as two meters, is closely packed to fit into the cell's tiny nucleus. Huge complex proteins called nucleosomes facilitate this DNA compaction so that eventually the DNA is coiled in an ordered manner to form chromosomes.

Made up of histone, a kind of protein, the nucleosomes are repeating units around which the double helix of DNA gets wrapped and vast amounts of genetic information get organized.

In trying to understand how the malaria parasite multiplies in red blood cells, Le Roch's team found that in Plasmodium a kind of "histone crash" takes place – a massive breakdown of histone that explains how the parasite can replicate extensively its DNA and coding gene in human red blood cells.

For cell multiplication to occur, the genes in a DNA strand need to first be transcribed and translated (converted) into protein. For this transcription to take place, however, the nucleosomes must first get evicted (removed), a process that opens up the DNA strand to give special "transcription factors" full access to the genes. The transcription factors then convert these genes into protein.

While in humans such eviction of nucleosomes is specific to only some sections of the DNA strand and performed only when needed, in Plasmodium the situation is vastly different.

Le Roch's experiments in the lab show that 18 hours after Plasmodium enters a red blood cell, a huge eviction of nucleosomes occurs in the Plasmodium DNA. Gene transcription throughout the genome follows; after multiplication into up to 32 daughter cells, the newly-formed parasites are ready to exit the red blood cell and invade new ones about 18 hours later.

"We found in our experiments that histones are massively evicted everywhere in the Plasmodium genome, resulting in most of the Plasmodium genes to be transcribed at once," Le Roch said. "If we can find a candidate enzyme that can regulate this massive histone eviction, we could halt or greatly limit Plasmodium replication."

Study results appear this month in the journal Genome Research.

"Dr. Le Roch's findings document a global mechanism mediating significant changes in gene expression as the parasites transition through developmental stages in the human hosts," said Anthony A. James, a distinguished professor of microbiology & molecular genetics and molecular biology & biochemistry at UC Irvine, who was not involved in the research. "As well as being a major basic discovery, this provides a basis for probing the mechanisms for novel drug development."

Le Roch obtained her master's degree in parasitology at the University of Lille II and the University of Oxford, in 1997. She completed her doctorate in 2001 at the University of Paris VI, working on the cell cycle regulation of Plasmodium. In 2001, she joined the Scripps Research Institute, San Diego, Calif., to carry out the functional analysis of the Plasmodium genome using microarray technologies. In 2004, she joined the Genomics Institute of the Novartis Research Foundation, Calif., where she developed the malaria drug discovery program. She joined UCR in 2006.

Le Roch was joined in the study by Nadia Ponts (the first author of the research paper), Elena Harris, Jacques Prudhomme, Glenn Hicks and Stefano Lonardi at UCR; and Ivan Wick, Colleen Eckhardt-Ludka and Gary Hardiman at UC San Diego.

UCR startup funds supported the study.

The University of California, Riverside (www.ucr.edu) is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment of about 18,000 is expected to grow to 21,000 students by 2020. The campus is planning a medical school and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Graduate Center. The campus has an annual statewide economic impact of more than $1 billion.

A broadcast studio with fiber cable to the AT&T Hollywood hub is available for live or taped interviews. To learn more, call (951) UCR-NEWS.

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>