Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA study shows bacteria use Batman-like grappling hooks to 'slingshot' on surfaces

19.07.2011
Bacteria use various appendages to move across surfaces prior to forming multicellular bacterial biofilms. Some species display a particularly jerky form of movement known as "twitching" motility, which is made possible by hairlike structures on their surface called type IV pili, or TFP.
"TFP act like Batman's grappling hooks," said Gerard Wong, a professor of bioengineering and of chemistry and biochemistry at the UCLA Henry Samueli School of Engineering and Applied Science and the California NanoSystems Institute (CNSI) at UCLA. "These grappling hooks can extend and bind to a surface and retract and pull the cell along."

In a study to be published online this week in Proceedings of the National Academy of Sciences, Wong and his colleagues at UCLA Engineering identify the complex sequence of movements that make up this twitching motility in Pseudomonas aeruginosa, a biofilm-forming pathogen partly responsible for the deadly infections seen in cystic fibrosis.

During their observations, Wong and his team made a surprising discovery. Using a high-speed camera and a novel two-point tracking algorithm, they noticed that the bacteria had the unique ability to "slingshot" on surfaces.

The team found that linear translational pulls of constant velocity alternated with velocity spikes that were 20 times faster but lasted only milliseconds. This action would repeat over and over again.
"The constant velocity is due to the pulling by multiple TFP; the velocity spike is due to the release of a single TFP," Wong said. "The release action leads to a fast slingshot motion that actually turns the bacteria efficiently by allowing it to over-steer."

The ability to turn and change direction is essential for bacteria to adapt to continually changing surface conditions as they form biofilms. The researchers found that the slingshot motion helped P. aeruginosa move much more efficiently through the polysaccharides they secrete on surfaces during biofilm formation, a phenomenon known as shear-thinning.

Slingshot bacteria

"If you look at the surfaces the bacteria have to move on, they are usually covered in goop. Bacterial cells secrete polysaccharides on surfaces, which are kind of like molasses," Wong said. "Because these polysaccharides are long polymer molecules that can get entangled, these are very viscous and can potentially impede movement. However, if you move very fast in these polymer fluids, the viscosity becomes much lower compared to when you're moving slowly. The fluid will then seem more like water than molasses. This kind of phenomenon is well known to chemical engineers and physicists."

Since the twitching motion of bacteria with TFP depends of the physical distributions of TFP on the surface of individual cells, Wong hopes that the analysis of motility patterns may in the future enable new methods for biometric "fingerprinting" of individual cells for single-cell diagnostics.

"It gives us the possibility of not just identifying species of bacteria but the possibility of also identifying individual cells. Perhaps in the future, we can look at a cell and try to find the same cell later on the basis of how it moves," he said.

The study was funded by the National Institutes of Health and the National Science Foundation. The lead authors are Fan Jin from the UCLA Department of Bioengineering, the UCLA Department Chemistry and Biochemistry, and the CNSI, and Jacinta C. Conrad of the department of chemical and biomolecular engineering at the University of Houston.

The UCLA Henry Samueli School of Engineering and Applied Science, established in 1945, offers 28 academic and professional degree programs and has an enrollment of almost 5,000 students. The school's distinguished faculty are leading research to address many of the critical challenges of the 21st century, including renewable energy, clean water, health care, wireless sensing and networking, and cybersecurity. Ranked among the top 10 engineering schools at public universities nationwide, the school is home to seven multimillion-dollar interdisciplinary research centers in wireless sensor systems, nanoelectronics, nanomedicine, renewable energy, customized computing, and the smart grid, all funded by federal and private agencies. (www.engineer.ucla.edu | www.twitter.com/uclaengineering)

For more UCLA news, visit UCLA Newsroom and UCLA News|Week and follow us on Twitter.

Wileen Wong Kromhout | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Life Sciences:

nachricht Bioluminescent worm found to have iron superpowers
15.12.2017 | University of California - San Diego

nachricht Computational strategies overcome obstacles in peptide therapeutics development
15.12.2017 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Diamond Lenses and Space Lasers at Photonics West

15.12.2017 | Trade Fair News

A better way to weigh millions of solitary stars

15.12.2017 | Physics and Astronomy

New epidemic management system combats monkeypox outbreak in Nigeria

15.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>