Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UCLA study shows bacteria use Batman-like grappling hooks to 'slingshot' on surfaces

Bacteria use various appendages to move across surfaces prior to forming multicellular bacterial biofilms. Some species display a particularly jerky form of movement known as "twitching" motility, which is made possible by hairlike structures on their surface called type IV pili, or TFP.
"TFP act like Batman's grappling hooks," said Gerard Wong, a professor of bioengineering and of chemistry and biochemistry at the UCLA Henry Samueli School of Engineering and Applied Science and the California NanoSystems Institute (CNSI) at UCLA. "These grappling hooks can extend and bind to a surface and retract and pull the cell along."

In a study to be published online this week in Proceedings of the National Academy of Sciences, Wong and his colleagues at UCLA Engineering identify the complex sequence of movements that make up this twitching motility in Pseudomonas aeruginosa, a biofilm-forming pathogen partly responsible for the deadly infections seen in cystic fibrosis.

During their observations, Wong and his team made a surprising discovery. Using a high-speed camera and a novel two-point tracking algorithm, they noticed that the bacteria had the unique ability to "slingshot" on surfaces.

The team found that linear translational pulls of constant velocity alternated with velocity spikes that were 20 times faster but lasted only milliseconds. This action would repeat over and over again.
"The constant velocity is due to the pulling by multiple TFP; the velocity spike is due to the release of a single TFP," Wong said. "The release action leads to a fast slingshot motion that actually turns the bacteria efficiently by allowing it to over-steer."

The ability to turn and change direction is essential for bacteria to adapt to continually changing surface conditions as they form biofilms. The researchers found that the slingshot motion helped P. aeruginosa move much more efficiently through the polysaccharides they secrete on surfaces during biofilm formation, a phenomenon known as shear-thinning.

Slingshot bacteria

"If you look at the surfaces the bacteria have to move on, they are usually covered in goop. Bacterial cells secrete polysaccharides on surfaces, which are kind of like molasses," Wong said. "Because these polysaccharides are long polymer molecules that can get entangled, these are very viscous and can potentially impede movement. However, if you move very fast in these polymer fluids, the viscosity becomes much lower compared to when you're moving slowly. The fluid will then seem more like water than molasses. This kind of phenomenon is well known to chemical engineers and physicists."

Since the twitching motion of bacteria with TFP depends of the physical distributions of TFP on the surface of individual cells, Wong hopes that the analysis of motility patterns may in the future enable new methods for biometric "fingerprinting" of individual cells for single-cell diagnostics.

"It gives us the possibility of not just identifying species of bacteria but the possibility of also identifying individual cells. Perhaps in the future, we can look at a cell and try to find the same cell later on the basis of how it moves," he said.

The study was funded by the National Institutes of Health and the National Science Foundation. The lead authors are Fan Jin from the UCLA Department of Bioengineering, the UCLA Department Chemistry and Biochemistry, and the CNSI, and Jacinta C. Conrad of the department of chemical and biomolecular engineering at the University of Houston.

The UCLA Henry Samueli School of Engineering and Applied Science, established in 1945, offers 28 academic and professional degree programs and has an enrollment of almost 5,000 students. The school's distinguished faculty are leading research to address many of the critical challenges of the 21st century, including renewable energy, clean water, health care, wireless sensing and networking, and cybersecurity. Ranked among the top 10 engineering schools at public universities nationwide, the school is home to seven multimillion-dollar interdisciplinary research centers in wireless sensor systems, nanoelectronics, nanomedicine, renewable energy, customized computing, and the smart grid, all funded by federal and private agencies. ( |

For more UCLA news, visit UCLA Newsroom and UCLA News|Week and follow us on Twitter.

Wileen Wong Kromhout | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

First results of NSTX-U research operations

26.10.2016 | Physics and Astronomy

UCI and NASA document accelerated glacier melting in West Antarctica

26.10.2016 | Earth Sciences

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

More VideoLinks >>>