Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UCLA study identifies 2 chemicals that could lead to new drugs for genetic disorders

Discovery could help people with cancer, muscular dystrophy, A-T

UCLA scientists have identified two chemicals that convince cells to ignore premature signals to stop producing important proteins. Published in the Sept. 28 edition of the Journal of Experimental Medicine, the findings could lead to new medications for genetic diseases, such as cancer and muscular dystrophy, that are sparked by missing proteins.

"When DNA changes, such as nonsense mutations, occur in the middle rather than the end of a protein-producing signal, they act like a stop sign that tells the cell to prematurely interrupt protein synthesis," explained Dr. Richard Gatti, professor of pathology and laboratory medicine and human genetics at the David Geffen School of Medicine at UCLA. "These nonsense mutations cause the loss of vital proteins that can lead to deadly genetic disorders."

Gatti's lab specializes in studying ataxia-telangiectasia (A-T), a progressive neurological disease that strikes young children, often killing them by their late teens or early 20s.

For four years, the UCLA Molecular Shared Screening Resources Center of the campus' California NanoSystems Institute has screened 35,000 chemicals, searching for those that ignore premature stop signals.

First author Liutao Du developed the screening technology in Gatti's laboratory.

"Of the dozens of active chemicals we discovered, only two were linked to the appearance and function of ATM, the protein missing from the cells of children with A-T," said Du. "These two chemicals also induced the production of dystrophin, a protein that is missing in the cells of mice with a nonsense mutation in the muscular dystrophy gene."

The UCLA team is optimistic that their discovery will aid pharmaceutical companies in creating drugs that correct genetic disorders caused by nonsense mutations. This could affect one in five patients with most genetic diseases, including hundreds of thousands of people suffering from incurable diseases. Because nonsense mutations can lead to cancer, such drugs may also find uses in cancer treatment.

Gatti's lab is funded by the Los Angeles-based Ataxia-Telangiectasia Medical Research Foundation, the National Institutes of Health and the New York-based Ataxia-Telangiectasia Ease Foundation.

The study's coauthors included Robert Damoiseaux, Shareef Nahas, Kun Gao, Hailiang Hu, Julianne Pollard, Jimena Goldstine, Michael Jung, Susan Henning and Carmen Bertoni, all of UCLA.

Elaine Schmidt | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>