Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA study finds genetic link between misery and death

25.02.2010
Researchers develop novel strategy to probe 'genetic haystack'
In ongoing work to identify how genes interact with social environments to impact human health, UCLA researchers have discovered what they describe as a biochemical link between misery and death. In addition, they found a specific genetic variation in some individuals that seems to disconnect that link, rendering them more biologically resilient in the face of adversity.

Perhaps most important to science in the long term, Steven Cole, a member of the UCLA Cousins Center for Psychoneuroimmunology and an associate professor of medicine in the division of hematology-oncology, and his colleagues have developed a unique strategy for finding and confirming gene–environment interactions to more efficiently probe what he calls the "genetic haystack."

The research appears in the current online edition of Proceedings of the National Academy of Sciences.

Using an approach that blends computational, in vivo and epidemiological studies to focus their genetic search, Cole and his colleagues looked at specific groups of proteins known as transcription factors, which regulate gene activity and mediate environmental influences on gene expression by binding to specific DNA sequences. These sequences differ within the population and may affect a gene's sensitivity to environmental activation.

Specifically, Cole analyzed transcription factor binding sequences in a gene called IL6, a molecule that is known to cause inflammation in the body and that contributes to cardiovascular disease, neurodegeneration and some types of cancer.

"The IL6 gene controls immune responses but can also serve as 'fertilizer' for cardiovascular disease and certain kinds of cancer," said Cole, who is also a member of UCLA's Jonsson Comprehensive Cancer Center and UCLA's Molecular Biology Institute. "Our studies were able to trace a biochemical pathway through which adverse life circumstances — fight-or-flight stress responses — can activate the IL6 gene.

"We also identified the specific genetic sequence in this gene that serves as a target of that signaling pathway, and we discovered that a well-known variation in that sequence can block that path and disconnect IL6 responses from the effects of stress."

To confirm the biochemical link between misery and death, and the genetic variation that breaks it, the researchers turned to epidemiological studies to prove that carriers of that specific genetic variation were less susceptible to death due to inflammation-related mortality causes under adverse social-environmental conditions.

They found that people with the most common type of the IL6 gene showed an increased risk of death for approximately 11 years after they had been exposed to adverse life events that were strong enough to trigger depression. However, people with the rarer variant of the IL6 gene appeared to be immune to those effects and showed no increase in mortality risk in the aftermath of significant life adversity.

This novel method of discovery — using computer modeling and then confirming genetic relationships using test-tube biochemistry, experimental stress studies and human genetic epidemiology — could speed the discovery of such gene and environmental relationships, the researchers say.

"Right now, we have to hunt down genetic influences on health through blind searches of huge databases, and the results from that approach have not yielded as much as expected," Cole said. "This study suggests that we can use computer modeling to discover gene–environment interactions, then confirm them, in order to focus our search more efficiently and hopefully speed the discovery process.

"This opens a new era in which we can begin to understand the influence of adversity on physical health by modeling the basic biology that allows the world outside us to influence the molecular processes going on inside our cells."

Other authors on the study were Jesusa M. G. Arevalo, Rie Takahashi, Erica K. Sloan and Teresa E. Seeman, of UCLA; Susan K. Lutgendorf, of the University of Iowa; Anil K. Sood, of the University of Texas; and John F. Sheridan, of Ohio State University. Funding was provided by the National Institutes of Health, the UCLA Norman Cousins Center and the James L. Pendleton Charitable Trust. The authors report no conflict of interest.

The UCLA Cousins Center for Psychoneuroimmunology encompasses an interdisciplinary network of scientists working to advance the understanding of psychoneuroimmunology by linking basic and clinical research programs and by translating findings into clinical practice. The center is affiliated with the Semel Institute for Neuroscience and Human Behavior and the David Geffen School of Medicine at UCLA.

For more news, visit the UCLA Newsroom and follow us on Twitter.

Mark Wheeler | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>