Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UCLA study finds genetic link between misery and death

Researchers develop novel strategy to probe 'genetic haystack'
In ongoing work to identify how genes interact with social environments to impact human health, UCLA researchers have discovered what they describe as a biochemical link between misery and death. In addition, they found a specific genetic variation in some individuals that seems to disconnect that link, rendering them more biologically resilient in the face of adversity.

Perhaps most important to science in the long term, Steven Cole, a member of the UCLA Cousins Center for Psychoneuroimmunology and an associate professor of medicine in the division of hematology-oncology, and his colleagues have developed a unique strategy for finding and confirming gene–environment interactions to more efficiently probe what he calls the "genetic haystack."

The research appears in the current online edition of Proceedings of the National Academy of Sciences.

Using an approach that blends computational, in vivo and epidemiological studies to focus their genetic search, Cole and his colleagues looked at specific groups of proteins known as transcription factors, which regulate gene activity and mediate environmental influences on gene expression by binding to specific DNA sequences. These sequences differ within the population and may affect a gene's sensitivity to environmental activation.

Specifically, Cole analyzed transcription factor binding sequences in a gene called IL6, a molecule that is known to cause inflammation in the body and that contributes to cardiovascular disease, neurodegeneration and some types of cancer.

"The IL6 gene controls immune responses but can also serve as 'fertilizer' for cardiovascular disease and certain kinds of cancer," said Cole, who is also a member of UCLA's Jonsson Comprehensive Cancer Center and UCLA's Molecular Biology Institute. "Our studies were able to trace a biochemical pathway through which adverse life circumstances — fight-or-flight stress responses — can activate the IL6 gene.

"We also identified the specific genetic sequence in this gene that serves as a target of that signaling pathway, and we discovered that a well-known variation in that sequence can block that path and disconnect IL6 responses from the effects of stress."

To confirm the biochemical link between misery and death, and the genetic variation that breaks it, the researchers turned to epidemiological studies to prove that carriers of that specific genetic variation were less susceptible to death due to inflammation-related mortality causes under adverse social-environmental conditions.

They found that people with the most common type of the IL6 gene showed an increased risk of death for approximately 11 years after they had been exposed to adverse life events that were strong enough to trigger depression. However, people with the rarer variant of the IL6 gene appeared to be immune to those effects and showed no increase in mortality risk in the aftermath of significant life adversity.

This novel method of discovery — using computer modeling and then confirming genetic relationships using test-tube biochemistry, experimental stress studies and human genetic epidemiology — could speed the discovery of such gene and environmental relationships, the researchers say.

"Right now, we have to hunt down genetic influences on health through blind searches of huge databases, and the results from that approach have not yielded as much as expected," Cole said. "This study suggests that we can use computer modeling to discover gene–environment interactions, then confirm them, in order to focus our search more efficiently and hopefully speed the discovery process.

"This opens a new era in which we can begin to understand the influence of adversity on physical health by modeling the basic biology that allows the world outside us to influence the molecular processes going on inside our cells."

Other authors on the study were Jesusa M. G. Arevalo, Rie Takahashi, Erica K. Sloan and Teresa E. Seeman, of UCLA; Susan K. Lutgendorf, of the University of Iowa; Anil K. Sood, of the University of Texas; and John F. Sheridan, of Ohio State University. Funding was provided by the National Institutes of Health, the UCLA Norman Cousins Center and the James L. Pendleton Charitable Trust. The authors report no conflict of interest.

The UCLA Cousins Center for Psychoneuroimmunology encompasses an interdisciplinary network of scientists working to advance the understanding of psychoneuroimmunology by linking basic and clinical research programs and by translating findings into clinical practice. The center is affiliated with the Semel Institute for Neuroscience and Human Behavior and the David Geffen School of Medicine at UCLA.

For more news, visit the UCLA Newsroom and follow us on Twitter.

Mark Wheeler | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>