Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA scientists reveal how deadly pediatric disorder develops in brain

11.05.2009
Disease's link to Alzheimer's could lead to first treatment

A deadly brain disorder in toddlers may find its first treatment in drugs for Alzheimer's disease.

UCLA scientists have discovered how a form of the rare genetic disease known as Sanfilippo syndrome develops in the young brain, causing severe mental retardation and death as early as age 14. Published this week in the early online edition of Proceedings of the National Academy of Sciences, the findings suggest that new Alzheimer's drugs may provide therapy for the currently untreatable metabolic disorder.

Four different enzyme deficiencies cause Sanfilippo syndrome, leading to the disorder's classification as type A, B, C or D. The UCLA team studied type B, the second most common form.

"We knew that Sanfilippo syndrome type B results from a mutation of the gene that produces the enzyme needed to break down sugar molecule chains in the body," said Elizabeth Neufeld, a professor of biological chemistry at the David Geffen School of Medicine at UCLA. "We studied the disease in mice bred to possess the same gene defect seen in human patients."

Neufeld's team found that mice with the defective gene produce higher amounts of two proteins called lysozyme and P-tau. They tracked the proteins to neurons in the medial entorhinal cortex — an important memory center in the brain. One of the first areas to be affected by Alzheimer's disease, the region also has been implicated in other abnormalities in Sanfilippo syndrome.

Earlier research had linked high levels of lysozyme to the production of P-tau, a misshapen protein that helps form the strands that clump into tangles in the brain. These tangles impair neuron function and are a hallmark of Alzheimer's and other degenerative brain diseases.

"This is really exciting," said co-author Stanislav Karsten, a UCLA assistant professor of neurology and of obstetrics and gynecology. "If we can replicate our discovery of P-tau in the brains of human patients, it may be possible to treat Sanfilippo syndrome with new drugs created for Alzheimer's disease. We believe our finding will accelerate the development of an effective therapy for this heartbreaking disorder."

Many scientists have searched for P-tau in the brains of Sanfilippo syndrome patients and in animal models. The UCLA team was the first to uncover it.

"We were fortunate to find the P-tau, because it appears in only a very small part of the brain," said lead author Kazuhiro Ohmi, a UCLA assistant researcher in biological chemistry.

Sanfilippo syndrome falls under MPS, a family of disorders involving mucopolysaccharides, which are long chains of sugar molecules used to build connective tissue. After the body finishes using these sugars, it breaks them down with enzymes and disposes of them.

Children with Sanfilippo syndrome lack the enzyme to digest the molecules, and they store them instead, leading to misshapen cells and enlarged organs. While infants rarely show signs of the disorder, symptoms worsen as children grow and their cells suffer more damage.

Fewer than one in 75,000 children are born with Sanfilippo syndrome. Both parents must carry and pass on the defective gene in order for their child to be affected — a one-in-four chance. Unaffected children have a two-in-three chance of carrying the gene.

Neufeld's earlier research identified the enzyme deficiencies that cause MPS. Her findings led to tests that enabled physicians to accurately diagnose the syndromes and counsel families. She is a consultant for Zacharon Pharmaceuticals, a biotechnology firm in San Diego.

The study's co-authors included Lili Kudo and Sergey Ryazantsev, both of UCLA. The research was funded by the National Institute of Neurological Disorders and Stroke, the Children's Medical Research Foundation, and the Alzheimer's Association.

To learn more about families living with Sanfilippo syndrome, visit the National MPS Society website at www.mpssociety.org.

Elaine Schmidt | EurekAlert!
Further information:
http://www.ucla.edu
http://www.mpssociety.org

More articles from Life Sciences:

nachricht Oestrogen regulates pathological changes of bones via bone lining cells
28.07.2017 | Veterinärmedizinische Universität Wien

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>