Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA scientists identify how major biological sensor in the body works

07.06.2011
A biological sensor is a critical part of a human cell's control system that is able to trigger a number of cell activities.

A type of sensor known as the "gating ring" can open a channel that allows a flow of potassium ions through the cell's wall or membrane — similar to the way a subway turnstile allows people into a station. This flow of ions, in turn, is involved in the regulation of crucial bodily activities like blood pressure, insulin secretion and brain signaling.

But the biophysical functioning of the gating ring sensor has not been clearly understood. Now, UCLA researchers have uncovered for the first time the sensor's molecular mechanism, shedding new light on the complexity of cells' control systems.

The findings, published in the June 10 issue of the Journal of Biological Chemistry and featured as a "Paper of the Week," could lead to the development of specific therapies against diseases such as hypertension and genetic epilepsy.

Just as a smoke detector senses its environment and responds by emitting a sound signal, cells control their intracellular environment through molecular sensors that assess changes and trigger a response.

In this case, when calcium ions bind to the gating ring — which constitutes the intracellular part of an ionic channel known as the BK channel — the cell responds by allowing the flow of potassium ions across the cell membrane, with a wide range of consequences for the body.

BK channels are present in most cells in the body and regulate fundamental biological processes such as blood pressure, electrical signaling in the brain and nervous system, inner ear hair-tuning that impacts hearing, muscle contractions in the bladder, and insulin secretion from the pancreas, to name a few.

The UCLA researchers were able to identify for the first time how the gating ring is activated and how it rearranges itself to open the gateway that the ions flow through. Using state-of-the-art electrophysiological, biochemical and spectroscopic techniques in the laboratory, the team demonstrated that when calcium ions bind to the gating ring, its structure changes — that is, it converts the chemical energy of the calcium binding into mechanical work that facilitates the opening of the BK channel.

"We were able to resolve the biophysical changes occurring in the sensor, under conditions resembling those present inside a living cell, so we believe that these transformations reflect the molecular events occurring when BK channels operate in the body," said research team leader Riccardo Olcese, an associate professor in the department of anesthesiology's division of molecular medicine and a member of both the Cardiovascular Research Laboratory and Brain Research Institute at the David Geffen School of Medicine at UCLA.

"This is an exciting field of study and we hope that these findings will lead to a greater understanding of how this complex biological sensor operates," said study author Anoosh D. Javaherian, a research associate in the department of anesthesiology's division of molecular medicine division at the Geffen School of Medicine.

Javaherian added that only last year were the structures involved in the BK sensor even identified. This is the first study to demonstrate its function.

Since the BK channel and its sensor are involved in so many aspects of normal physiological function, researchers believe that it is likely the process could be implicated in many aspects of disease as well.

"This molecular and dynamic view of the BK intracellular sensor helps us understand how signaling molecules are sensed, providing new ideas on how to fight disease," said Taleh Yusifov, a research associate in the department of anesthesiology's division of molecular medicine at the Geffen School of Medicine.

For example, Yusifov noted, the malfunction of this BK channel's sensor has been associated with genetic epilepsy.

The next step in the research will assess if the BK gating ring sensor and channel are involved in sensing small molecules — other than calcium ions — which also have great biological significance in the workings of the human body.

The study was funded by the National Institutes of Health; the National Institute of General Medical Sciences; the American Heart Association; and the Laubisch Foundation.

Other study authors include Antonios Pantazis and Sarah Franklin of the department of anesthesiology's division of molecular medicine at the Geffen School of Medicine, and Chris

S. Gandhi of the division of chemistry and chemical engineering at the California Institute of Technology in Pasadena, Calif.

For more news, visit the UCLA Newsroom and UCLA News|Week and follow us on Twitter.

Rachel Champeau | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>