Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA scientists discover ultrasonic communication among frogs

12.05.2009
Research could have implications for addressing hearing loss in humans

UCLA scientists report for the first time on the only known frog species that can communicate using purely ultrasonic calls, whose frequencies are too high to be heard by humans. Known as Huia cavitympanum, the frog lives only on the Southeast Asian island of Borneo.

Ultrasounds are high-pitched sounds more than 20 kilohertz (kHz) in frequency, which exceeds the upper limit of sounds detectable by humans and is far higher than the 5 to 8 kHz frequencies most amphibians, reptiles and birds are capable of hearing or producing. Key parts of the ear must be specially adapted to detect ultrasounds.

The frogs can hear sounds up to 38 kilohertz, the highest frequency any amphibian species has been known to hear, the scientists report. Humans can hear up to about 20 kHz and typically talk at 2 or 3 kHz.

While most of the more than 5,000 frog species worldwide have eardrums that are flat on the side of the head, Huia cavitympanum has eardrums recessed in the side of the skull, similar to mammals.

Peter Narins, UCLA distinguished professor of physiological science and of ecology and evolutionary biology, and Victoria Arch, a UCLA graduate student in ecology and evolutionary biology, spent several nights in the remote area where the frogs live.

"We had very little information suggesting that they would be in this location," said Arch, lead author of the study. "We found them our first night out."

The study was published April 29 in the online journal PLoS ONE, a publication of the Public Library of Science, and is available at http://dx.plos.org/10.1371/journal.pone.0005413.

Huia cavitympanum produces some audible calls and others that are entirely ultrasonic.

"You look at the frog and can see it is vocalizing — you can tell because their vocal pouches pulsate — but you don't hear any sound. It's amazing," Arch said. "Then you look down at the recording equipment and see the lights flashing, indicating sound. I have never seen that before. In a frog, it's unprecedented to have purely ultrasonic vocalizations."

Narins and Arch have an idea about why the frogs, which live along a noisy stream, use both ultrasonic communication and calls that are audible to humans.

"Our hypothesis is that these frogs have shifted to use higher frequencies in their communication to avoid the interference of sound produced by rushing water in the lower-frequency range," Arch said. "However, high-frequency sounds do not transmit as far. By producing some lower-frequency calls, they can transmit calls over a greater distance, so they can communicate with frogs that are farther away. But by also producing some calls that are high-frequency — all ultrasonic — they may be able to communicate better over that background noise.

"Producing both types of calls might be a bet-hedging strategy to be heard," Arch said. "This is how males attract females, communicate with one another and establish territorial boundaries."

The research may have implications for improving human hearing aids and addressing hearing loss. Most hearing aids, Narins said, simply amplify sound, including unnecessary background noise. Better hearing aids that are directional, for example, could result from the research.

In 1998, Kraig Adler, a professor of neurobiology and behavior who had been Narins' professor at Cornell University, told Narins he should go to China to see "a frog with an ear canal like a human," Narins recalled.

Narins took the advice. Along with colleagues, including Albert Feng from the University of Illinois, Urbana-Champaign, he discovered a frog species that lives in rushing streams and waterfalls in east-central China called Odorrana tormota (formerly known as Amolops tormotus). Odorrana tormota, Narins found, could detect and produce ultrasounds due to the highly unusual presence of an ear canal. That research was published March 16, 2006, in the journal Nature.

The frogs in China produce very loud calls that are, at the same time, both audible and ultrasonic. In Borneo, however, Huia cavitympanum produces some sounds that are purely ultrasonic.

"That was unique — and the first time that has been found in any frog species," said Narins, who has studied dozens of frog species. "We are reporting this for the first time."

"With the Chinese frog species, every time you see the vocal sac pulsate, you will hear a sound," Arch said. "With the Bornean frog, sometimes you will see it is calling and you don't hear anything; it's all outside of our hearing range."

The frogs in China and Borneo's Huia cavitympanum are the only two frog species known to have recessed ear drums, Narins said.

In China, the scientists had set up a loudspeaker in the frogs' natural habitat near a river, then played frog calls and recorded the frogs' vocal responses with a microphone and very high-frequency equipment.

Later, they learned of this second species in Borneo with similar ear morphology. Narins and Arch went to Borneo in 2007, and Arch went back last summer.

In Borneo, they lived in a camp with a roof and three walls, with one side open. They slept on a wood floor, protected by mosquito nets. Narins was bitten by leeches and woke up several mornings soaked in blood. They ate noodles and peanut butter.

"It was a huge adventure, and so exciting to study the animals in their habitat," Arch said. "You feel like you're eavesdropping on them."

"There are not many places on the planet left that are so pristine and untouched by humans," Narins said. "It's exciting to go there and wonderful to have a sense of discovering something brand-new. We were there a week and saw only two other people."

Arch and Narins studied male frogs. In the majority of frog species, the females do not vocalize, and when they do, they do so less frequently than males, Arch said.

The research was funded by the National Geographic Society's Committee for Research and Exploration, the Paul S. Veneklasen Research Foundation, the National Institute on Deafness and Other Communication Disorders (NIDCD) of the National Institutes of Health, and the National Science Foundation (through a doctoral dissertation improvement grant to Arch).

Co-authors are T. Ulmar Grafe, a faculty member in the biology department at Borneo's University Brunei Darussalam, and Marcos Gridi-Papp, a UCLA postdoctoral scholar in Narins' laboratory.

The National Institute on Deafness and Other Communication Disorders supports and conducts research and research training on the normal and disordered processes of hearing, balance, smell, taste, voice, speech and language and provides health information, based upon scientific discovery, to the public. For more information, visit www.nidcd.nih.gov.

UCLA is California's largest university, with an enrollment of nearly 38,000 undergraduate and graduate students. The UCLA College of Letters and Science and the university's 11 professional schools feature renowned faculty and offer more than 323 degree programs and majors. UCLA is a national and international leader in the breadth and quality of its academic, research, health care, cultural, continuing education and athletic programs. Four alumni and five faculty have been awarded the Nobel Prize.

Stuart Wolpert | EurekAlert!
Further information:
http://www.ucla.edu
http://www.nsf.gov

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>