Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA scientists complete first mapping of molecule found in human embryonic stem cells

22.07.2011
Stem cell researchers at UCLA have generated the first genome-wide mapping of a DNA modification called 5-hydroxymethylcytosine (5hmC) in embryonic stem cells, and discovered that it is predominantly found in genes that are turned on, or active.

The finding by researchers with the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA may prove to be important in controlling diseases like cancer, where the regulation of certain genes plays a role in disease development.

"Any way you can control genes will be hugely important for human disease and cancer," said Steven E. Jacobsen, a professor of molecular, cell and developmental biology in the Life Sciences and a Howard Hughes Medical Institute investigator. "Cancer is generally a problem of genes being inappropriately turned off or mutated, like tumor suppressors genes, or genes that should be off getting switched on."

The study appears in the July issue of the journal Genome Biology.

5hmC is formed from the DNA base cytosine by adding a methyl group and then a hydroxy group. The molecule is important in epigenetics - the study of changes in gene expression caused by mechanisms other than changes in the DNA sequence - because the newly formed hydroxymethyl group on the cytosine can potentially switch a gene on and off, Jacobsen said.

The molecule 5hmC was only recently discovered, and its function has not been clearly understood, Jacobsen said. Until now, researchers didn't know where 5hmC was located within the genome.

"That is important to know because it helps you to understand how it is functioning and what it's being used for," said Jacobsen, who also is a researcher with UCLA's Jonsson Comprehensive Cancer Center. "We had known that DNA could be modified by 5hmC, but it wasn't clear where on the genome this was occurring."

Jacobsen, whose lab studies the molecular genetics and genomics of DNA methylation patterning, used genomics to define where in human embryonic stem cells the 5hmC was present. They used human embryonic stem cells because it had been shown previously that the molecule is abundant in those cells, as well as in brain cells, Jacobsen said.

In the study, Jacobsen found that 5hmC was associated with genes and tended to be found on genes that were active. The study also revealed that 5hmC was present on a type of DNA regulatory element, called enhancers, which help control gene expression. In particular, 5hmC was present on enhancers that are crucial for defining the nature of the human embryonic stem cells.

The results suggest that 5hmC plays a role in the activation of genes. This is opposite of the role of the more well studied 5mC (DNA methylation), which is involved in silencing genes. This relationship is in line with the view that 5hmC is created directly from 5mC.

"If we can understand the function of 5hmC, that will lead to greater understanding of how genes are turned on and off and that could lead to the development of methods for controlling gene regulation," Jacobsen said.

Moving forward, Jacobsen and his team will seek to uncover the mechanism by which 5hmC is created from DNA methylation and how it becomes localized to particular areas of the genome, such as the enhancers.

The two-year study was funded by the Howard Hughes Medical Institute, a Fred Eiserling and Judith Lengyel Graduate Doctoral Fellowship, the Leukemia & Lymphoma Society, the National Institutes of Health and by an Innovation Award from the Eli and Edythe Broad Center of Regenerative Medicine & Stem Cell Research at UCLA.

The stem cell center was launched in 2005 with a UCLA commitment of $20 million over five years. A $20 million gift from the Eli and Edythe Broad Foundation in 2007 resulted in the renaming of the center. With more than 200 members, the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research is committed to a multi-disciplinary, integrated collaboration of scientific, academic and medical disciplines for the purpose of understanding adult and human embryonic stem cells. The center supports innovation, excellence and the highest ethical standards focused on stem cell research with the intent of facilitating basic scientific inquiry directed towards future clinical applications to treat disease. The center is a collaboration of the David Geffen School of Medicine, UCLA's Jonsson Cancer Center, the Henry Samueli School of Engineering and Applied Science and the UCLA College of Letters and Science. To learn more about the center, visit our web site at http://www.stemcell.ucla.edu

Kim Irwin | EurekAlert!
Further information:
http://www.ucla.edu
http://www.stemcell.ucla.edu

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>