Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA scientists complete first mapping of molecule found in human embryonic stem cells

22.07.2011
Stem cell researchers at UCLA have generated the first genome-wide mapping of a DNA modification called 5-hydroxymethylcytosine (5hmC) in embryonic stem cells, and discovered that it is predominantly found in genes that are turned on, or active.

The finding by researchers with the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA may prove to be important in controlling diseases like cancer, where the regulation of certain genes plays a role in disease development.

"Any way you can control genes will be hugely important for human disease and cancer," said Steven E. Jacobsen, a professor of molecular, cell and developmental biology in the Life Sciences and a Howard Hughes Medical Institute investigator. "Cancer is generally a problem of genes being inappropriately turned off or mutated, like tumor suppressors genes, or genes that should be off getting switched on."

The study appears in the July issue of the journal Genome Biology.

5hmC is formed from the DNA base cytosine by adding a methyl group and then a hydroxy group. The molecule is important in epigenetics - the study of changes in gene expression caused by mechanisms other than changes in the DNA sequence - because the newly formed hydroxymethyl group on the cytosine can potentially switch a gene on and off, Jacobsen said.

The molecule 5hmC was only recently discovered, and its function has not been clearly understood, Jacobsen said. Until now, researchers didn't know where 5hmC was located within the genome.

"That is important to know because it helps you to understand how it is functioning and what it's being used for," said Jacobsen, who also is a researcher with UCLA's Jonsson Comprehensive Cancer Center. "We had known that DNA could be modified by 5hmC, but it wasn't clear where on the genome this was occurring."

Jacobsen, whose lab studies the molecular genetics and genomics of DNA methylation patterning, used genomics to define where in human embryonic stem cells the 5hmC was present. They used human embryonic stem cells because it had been shown previously that the molecule is abundant in those cells, as well as in brain cells, Jacobsen said.

In the study, Jacobsen found that 5hmC was associated with genes and tended to be found on genes that were active. The study also revealed that 5hmC was present on a type of DNA regulatory element, called enhancers, which help control gene expression. In particular, 5hmC was present on enhancers that are crucial for defining the nature of the human embryonic stem cells.

The results suggest that 5hmC plays a role in the activation of genes. This is opposite of the role of the more well studied 5mC (DNA methylation), which is involved in silencing genes. This relationship is in line with the view that 5hmC is created directly from 5mC.

"If we can understand the function of 5hmC, that will lead to greater understanding of how genes are turned on and off and that could lead to the development of methods for controlling gene regulation," Jacobsen said.

Moving forward, Jacobsen and his team will seek to uncover the mechanism by which 5hmC is created from DNA methylation and how it becomes localized to particular areas of the genome, such as the enhancers.

The two-year study was funded by the Howard Hughes Medical Institute, a Fred Eiserling and Judith Lengyel Graduate Doctoral Fellowship, the Leukemia & Lymphoma Society, the National Institutes of Health and by an Innovation Award from the Eli and Edythe Broad Center of Regenerative Medicine & Stem Cell Research at UCLA.

The stem cell center was launched in 2005 with a UCLA commitment of $20 million over five years. A $20 million gift from the Eli and Edythe Broad Foundation in 2007 resulted in the renaming of the center. With more than 200 members, the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research is committed to a multi-disciplinary, integrated collaboration of scientific, academic and medical disciplines for the purpose of understanding adult and human embryonic stem cells. The center supports innovation, excellence and the highest ethical standards focused on stem cell research with the intent of facilitating basic scientific inquiry directed towards future clinical applications to treat disease. The center is a collaboration of the David Geffen School of Medicine, UCLA's Jonsson Cancer Center, the Henry Samueli School of Engineering and Applied Science and the UCLA College of Letters and Science. To learn more about the center, visit our web site at http://www.stemcell.ucla.edu

Kim Irwin | EurekAlert!
Further information:
http://www.ucla.edu
http://www.stemcell.ucla.edu

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>