Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA researchers make first direct recording of mirror neurons in human brain

13.04.2010
Such cells appear to have wider distribution than previously thought

Mirror neurons, many say, are what make us human. They are the cells in the brain that fire not only when we perform a particular action but also when we watch someone else perform that same action.

Neuroscientists believe this "mirroring" is the mechanism by which we can "read" the minds of others and empathize with them. It's how we "feel" someone's pain, how we discern a grimace from a grin, a smirk from a smile.

Problem was, there was no proof that mirror neurons existed — only suspicion and indirect evidence. Now, reporting in the April edition of the journal Current Biology, Dr. Itzhak Fried, a UCLA professor of neurosurgery and of psychiatry and biobehavioral sciences, Roy Mukamel, a postdoctoral fellow in Fried's lab, and their colleagues have for the first time made a direct recording of mirror neurons in the human brain.

The researchers recorded both single cells and multiple-cell activity, not only in motor regions of the brain where mirror neurons were thought to exist but also in regions involved in vision and in memory.

Further, they showed that specific subsets of mirror cells increased their activity during the execution of an action but decreased their activity when an action was only being observed.

"We hypothesize that the decreased activity from the cells when observing an action may be to inhibit the observer from automatically performing that same action," said Mukamel, the study's lead author. "Furthermore, this subset of mirror neurons may help us distinguish the actions of other people from our own actions."

The researchers drew their data directly from the brains of 21 patients who were being treated at Ronald Reagan UCLA Medical Center for intractable epilepsy. The patients had been implanted with intracranial depth electrodes to identify seizure foci for potential surgical treatment. Electrode location was based solely on clinical criteria; the researchers, with the patients' consent, used the same electrodes to "piggyback" their research.

The experiment included three parts: facial expressions, grasping and a control experiment. Activity from a total of 1,177 neurons in the 21 patients was recorded as the patients both observed and performed grasping actions and facial gestures. In the observation phase, the patients observed various actions presented on a laptop computer. In the activity phase, the subjects were asked to perform an action based on a visually presented word. In the control task, the same words were presented and the patients were instructed not to execute the action.

The researchers found that the neurons fired or showed their greatest activity both when the individual performed a task and when they observed a task. The mirror neurons making the responses were located in the medial frontal cortex and medial temporal cortex, two neural systems where mirroring responses at the single-cell level had not been previously recorded, not even in monkeys.

This new finding demonstrates that mirror neurons are located in more areas of the human brain than previously thought. Given that different brain areas implement different functions — in this case, the medial frontal cortex for movement selection and the medial temporal cortex for memory — the finding also suggests that mirror neurons provide a complex and rich mirroring of the actions of other people.

Because mirror neurons fire both when an individual performs an action and when one watches another individual perform that same action, it's thought this "mirroring" is the neural mechanism by which the actions, intentions and emotions of other people can be automatically understood.

"The study suggests that the distribution of these unique cells linking the activity of the self with that of others is wider than previously believed," said Fried, the study's senior author and director of the UCLA Epilepsy Surgery Program.

"It's also suspected that dysfunction of these mirror cells might be involved in disorders such as autism, where the clinical signs can include difficulties with verbal and nonverbal communication, imitation and having empathy for others," Mukamel said. "So gaining a better understanding of the mirror neuron system might help devise strategies for treatment of this disorder."

Other authors on the study included Arne D. Ekstrom, Jonas Kaplan and Marco Iacoboni, all of UCLA. The project was supported by the National Center for Research Resources, a component of the National Institutes of Health (NIH). The authors report no conflict of interest.

The UCLA Department of Neurosurgery is committed to providing the finest and most comprehensive patient care through innovative clinical programs in minimally invasive brain and spinal surgery; neuroendoscopy; neuro-oncology for both adult and pediatric brain tumors; cerebrovascular surgery; stereotactic radiosurgery for brain and spinal disorders; surgery for movement disorders such as Parkinson's disease; and epilepsy surgery. For 20 consecutive years, the department has been ranked among the top 10 neurosurgery programs in the nation by U.S. News & World Report.

The UCLA Department of Psychiatry and Biobehavioral Sciences is the home within the David Geffen School of Medicine at UCLA for faculty who are experts in the origins and treatment of disorders of complex human behavior. The department is part of the Semel Institute for Neuroscience and Human Behavior at UCLA, a world-leading interdisciplinary research and education institute devoted to the understanding of complex human behavior and the causes and consequences of neuropsychiatric disorders.

For more news, visit the UCLA Newsroom and follow us on Twitter.

Mark Wheeler | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Life Sciences:

nachricht Biofuel produced by microalgae
28.02.2017 | Tokyo Institute of Technology

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Scientists reach back in time to discover some of the most power-packed galaxies

28.02.2017 | Physics and Astronomy

Nano 'sandwich' offers unique properties

28.02.2017 | Materials Sciences

Light beam replaces blood test during heart surgery

28.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>