Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA researchers identify new gene involved in Parkinson's disease

05.06.2014

Finding that may result in new treatments for the debilitating disorder

A team of UCLA researchers has identified a new gene involved in Parkinson's disease, a finding that may one day provide a target for a new drug to prevent and potentially even cure the debilitating neurological disorder.

Dr. Ming Guo, University of California - Los Angeles Health Sciences

This is Dr. Ming Guo.

Credit: UCLA

Parkinson's disease is the second most common neurodegenerative disorder after Alzheimer's disease, and there is no cure for the progressive and devastating illness. About 60,000 Americans are diagnosed with Parkinson's disease each year. It is estimated that as many as 1 million Americans live with Parkinson's disease, which is more than the number of people diagnosed with multiple sclerosis, muscular dystrophy and Lou Gehrig's disease combined.

In Parkinson's disease, multiple neurons in the brain gradually break down or die. This leads to the movement impairments, such as tremor, rigidity, slowness in movement and difficulty walking, as well as depression, anxiety, sleeping difficulties and dementia, said Dr. Ming Guo, the study team leader, associate professor of neurology and pharmacology and a practicing neurologist at UCLA.

A handful of genes have been identified in inherited cases of Parkinson's disease. Guo's team was one of two groups worldwide that first reported in 2006 in the journal Nature that two of these genes, PTEN-induced putative kinase 1 (PINK1) and PARKIN, act together to maintain the health of mitochondria – the power house of the cell that is important in maintaining brain health. Mutations in these genes lead to early-onset Parkinson's disease.

Guo's team has further shown that when PINK1 and PARKIN are operating correctly, they help maintain the regular shape of healthy mitochondria and promote elimination of damaged mitochondria. Accumulation of unhealthy or damaged mitochondria in neurons and muscles ultimately results in Parkinson's disease.

In this study, the team found that the new gene, called MUL1 (also known as MULAN and MAPL), plays an important role in mediating the pathology of the PINK1 and PARKIN. The study, performed in fruit flies and mice, showed that providing an extra amount of MUL1 ameliorates the mitochondrial damage due to mutated PINK/PARKIN, while inhibiting MUL1 in mutant PINK1/PARKIN exacerbates the damage to the mitochondria. In addition, Guo and her collaborators found that removing MUL1 from mouse neurons of the PARKIN disease model results in unhealthy mitochondria and degeneration of the neurons.

The five-year study appears June 4, 2014, in eLife, a new, open access scientific journal for groundbreaking biomedical and life research sponsored by the Howard Hughes Medical Institute (United States), the Wellcome Trust (United Kingdom) and Max Plank Institutes (Germany).

"We are very excited about this finding," Guo said. "There are several implications to this work, including that MUL1 appears to be a very promising drug target and that it may constitute a new pathway regulating the quality of mitochondria."

Guo characterized the work as "a major advancement in Parkinson's disease research."

"We show that MUL1 dosage is key and optimizing its function is crucial for brain health and to ward off Parkinson's disease," she said. "Our work proves that mitochondrial health is of central importance to keep us from suffering from neurodegeneration. Further, finding a drug that can enhance MUL1 function would be of great benefit to patients with Parkinson's disease."

Going forward, Guo and her team will test these results in more complex organisms, hoping to uncover additional functions and mechanisms of MUL1. Additionally, the team will perform small molecule screens to help identify potential compounds that specifically target MUL1. Further, they will examine if mutations in MUL1 exist in some patients with inherited forms of Parkinson's.

###

The study, collaboration between the Guo lab and Dr. Zuhang Sheng from the National Institute of Health, was supported by the National Institute of Aging (R01, K02), National Institute of Neurological Disorders and Stroke (EUREKA award), Ellison Medical Foundation Senior Scholar Award, McKnight Neuroscience Foundation, the Klingenstein Foundation, the American Parkinson's Disease Association and the Glenn Family Foundation.

The UCLA Department of Neurology encompasses more than 26 disease-related research programs. This includes all of the major categories of neurological diseases and methods, encompassing neurogenetics and neuroimaging, as well as health services research. The 140 faculty members of the department are distinguished scientists and clinicians who have been ranked No. 1 in National Institutes of Health funding since 2002. The department is dedicated to understanding the human nervous system and improving the lives of people with neurological diseases, focusing on three key areas: patient/clinical care, research and education.

Kim Irwin | Eurek Alert!
Further information:
http://www.ucla.edu

Further reports about: PINK1 Parkinson's UCLA damage function genes mitochondria neurological neurons

More articles from Life Sciences:

nachricht Rice University lab runs crowd-sourced competition to create 'big data' diagnostic tools
30.06.2016 | Rice University

nachricht A protein coat helps chromosomes keep their distance
30.06.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Thousands on one chip: New Method to study Proteins

Since the completion of the human genome an important goal has been to elucidate the function of the now known proteins: a new molecular method enables the investigation of the function for thousands of proteins in parallel. Applying this new method, an international team of researchers with leading participation of the Technical University of Munich (TUM) was able to identify hundreds of previously unknown interactions among proteins.

The human genome and those of most common crops have been decoded for many years. Soon it will be possible to sequence your personal genome for less than 1000...

Im Focus: Optical lenses, hardly larger than a human hair

3D printing enables the smalles complex micro-objectives

3D printing revolutionized the manufacturing of complex shapes in the last few years. Using additive depositing of materials, where individual dots or lines...

Im Focus: Flexible OLED applications arrive

R2D2, a joint project to analyze and development high-TRL processes and technologies for manufacture of flexible organic light-emitting diodes (OLEDs) funded by the German Federal Ministry of Education and Research (BMBF) has been successfully completed.

In contrast to point light sources like LEDs made of inorganic semiconductor crystals, organic light-emitting diodes (OLEDs) are light-emitting surfaces. Their...

Im Focus: Unexpected flexibility found in odorant molecules

High resolution rotational spectroscopy reveals an unprecedented number of conformations of an odorant molecule – a new world record!

In a recent publication in the journal Physical Chemistry Chemical Physics, researchers from the Max Planck Institute for the Structure and Dynamics of Matter...

Im Focus: 3-D printing produces cartilage from strands of bioink

Strands of cow cartilage substitute for ink in a 3D bioprinting process that may one day create cartilage patches for worn out joints, according to a team of engineers. "Our goal is to create tissue that can be used to replace large amounts of worn out tissue or design patches," said Ibrahim T. Ozbolat, associate professor of engineering science and mechanics. "Those who have osteoarthritis in their joints suffer a lot. We need a new alternative treatment for this."

Cartilage is a good tissue to target for scale-up bioprinting because it is made up of only one cell type and has no blood vessels within the tissue. It is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Quantum technologies to revolutionise 21st century - Nobel Laureates discuss at Lindau

30.06.2016 | Event News

International Conference ‘GEO BON’ Wants to Close Knowledge Gaps in Global Biodiversity

28.06.2016 | Event News

ERES 2016: The largest conference in the European real estate industry

09.06.2016 | Event News

 
Latest News

Modeling NAFLD with human pluripotent stem cell derived immature hepatocyte like cells

30.06.2016 | Health and Medicine

Rice University lab runs crowd-sourced competition to create 'big data' diagnostic tools

30.06.2016 | Life Sciences

A drop of water as a model for the interplay of adhesion and stiction

30.06.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>