Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA researchers engineer blood stem cells to fight melanoma

29.11.2011
Researchers from UCLA's cancer and stem cell centers have demonstrated for the first time that blood stem cells can be engineered to create cancer-killing T-cells that seek out and attack a human melanoma. The researchers believe this approach could be useful in 40 percent of Caucasians with this malignancy.

Done in mouse models, the study serves as first proof-of-principle that blood stem cells, which make every cell type found in blood, can be genetically altered in a living organism to create an army of melanoma-fighting T-cells, said Jerome Zack, study senior author and a scientist with UCLA's Jonsson Comprehensive Cancer Center and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA.

"We knew from previous studies that we could generate engineered T-cells, but would they work to fight cancer in a relevant model of human disease, such as melanoma," said Zack, a professor of medicine and microbiology, immunology, and molecular genetics in Life Sciences. "We found with this study that they do work in a human model to fight cancer, and it's a pretty exciting finding."

The study appears Nov. 28, 2011 in the early online edition of the peer-reviewed journal Proceedings of the National Academy of Sciences.

Researchers used a T-cell receptor from a cancer patient cloned by other scientists that seeks out an antigen expressed by this type of melanoma. They then genetically engineered the human blood stem cells by importing genes for the T-cell receptor into the stem cell nucleus using a viral vehicle. The genes integrate with the cell DNA and are permanently incorporated into the blood stem cells, theoretically enabling them to produce melanoma-fighting cells indefinitely and when needed, said Dimitrios N. Vatakis, study first author and an assistant researcher in Zack's lab.

"The nice thing about this approach is a few engineered stem cells can turn into an army of T-cells that will respond to the presence of this melanoma antigen," Vatakis said. "These cells can exist in the periphery of the blood and if they detect the melanoma antigen, they can replicate to fight the cancer."

In the study, the engineered blood stem cells were placed into human thymus tissue that had been implanted in the mice, allowing Zack and his team to study the human immune system reaction to melanoma in a living organism. Over time, about six weeks, the engineered blood stem cells developed into a large population of mature, melanoma-specific T-cells that were able to target the right cancer cells.

The mice were then implanted with two types of melanoma, one that expressed the antigen complex that attracts the engineered T-cells and one tumor that did not. The engineered cells specifically went after the antigen-expressing melanoma, leaving the control tumor alone, Zack said.

The study included nine mice. In four animals, the antigen-expressing melanomas were completely eliminated. In the other five mice, the antigen-expressing melanomas decreased in size, Zack said, an impressive finding.

Response was assessed not only by measuring physical tumor size, but by monitoring the cancer's metabolic activity using Positron Emission Tomography (PET), which measures how much energy the cancer is "eating" to drive its growth.

"We were very happy to see that four tumors were completely gone and the rest had regressed, both by measuring their size and actually seeing their metabolic activity through PET," Zack said.

This approach to immune system engineering has intriguing implications, Zack said. T-cells can be engineered to fight disease, but their function is not long-lasting in most cases. More engineered T-cells ultimately are needed to sustain a response. This approach engineers the cells that give rise to the T-cells, so "fresh" cancer-killing cells could be generated when needed, perhaps protecting against cancer recurrence later.

Going forward, the team would like to test this approach in clinical trials. One possible approach would be to engineer both the peripheral T-cells and the blood stem cells that give rise to T-cells. The peripheral T-cells would serve as the front line cancer fighters, while the blood stem cells are creating a second wave of warriors to take up the battle as the front line T-cells are losing function.

Zack said he hopes this engineered immunity approach will translate to other cancers as well, including breast and prostate cancers.

The four-year study was funded in part by the National Institutes of Health, the California Institute for Regenerative Medicine, the Caltech-UCLA Joint Center for Translational Medicine, UCLA Center for AIDS Research and the UCLA AIDS Institute.

UCLA's Jonsson Comprehensive Cancer Center has more than 240 researchers and clinicians engaged in disease research, prevention, detection, control, treatment and education. One of the nation's largest comprehensive cancer centers, the Jonsson center is dedicated to promoting research and translating basic science into leading-edge clinical studies. In July 2011, the Jonsson Cancer Center was named among the top 10 cancer centers nationwide by U.S. News & World Report, a ranking it has held for 11 of the last 12 years. For more information on the Jonsson Cancer Center, visit our website at http://www.cancer.ucla.edu.

The stem cell center was launched in 2005 with a UCLA commitment of $20 million over five years. A $20 million gift from the Eli and Edythe Broad Foundation in 2007 resulted in the renaming of the center. With more than 200 members, the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research is committed to a multi-disciplinary, integrated collaboration of scientific, academic and medical disciplines for the purpose of understanding adult and human embryonic stem cells. The center supports innovation, excellence and the highest ethical standards focused on stem cell research with the intent of facilitating basic scientific inquiry directed towards future clinical applications to treat disease. The center is a collaboration of the David Geffen School of Medicine, UCLA's Jonsson Cancer Center, the Henry Samueli School of Engineering and Applied Science and the UCLA College of Letters and Science. To learn more about the center, visit our web site at http://www.stemcell.ucla.edu. To learn more about the center, visit our web site at http://www.stemcell.ucla.edu

Kim Irwin | EurekAlert!
Further information:
http://www.mednet.ucla.edu
http://www.stemcell.ucla.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>