Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA researchers demonstrate that stem cells can be engineered to kill HIV

09.12.2009
Innovative strategy could be effective against other chronic viral diseases
Researchers from the UCLA AIDS Institute and colleagues have for the first time demonstrated that human blood stem cells can be engineered into cells that can target and kill HIV-infected cells — a process that potentially could be used against a range of chronic viral diseases.

The study, published Dec. 7 in the-peer reviewed online journal PLoS ONE, provides proof-of-principle — that is, a demonstration of feasibility — that human stem cells can be engineered into the equivalent of a genetic vaccine.

"We have demonstrated in this proof-of-principle study that this type of approach can be used to engineer the human immune system, particularly the T-cell response, to specifically target HIV-infected cells," said lead investigator Scott G. Kitchen, assistant professor of medicine in the division of hematology and oncology at the David Geffen School of Medicine at UCLA and a member of the UCLA AIDS Institute. "These studies lay the foundation for further therapeutic development that involves restoring damaged or defective immune responses toward a variety of viruses that cause chronic disease, or even different types of tumors."

Taking CD8 cytotoxic T lymphocytes — the "killer" T cells that help fight infection — from an HIV-infected individual, the researchers identified the molecule known as the T-cell receptor, which guides the T cell in recognizing and killing HIV-infected cells. These cells, while able to destroy HIV-infected cells, do not exist in enough quantities to clear the virus from the body. So the researchers cloned the receptor and genetically engineered human blood stem cells, then placed the stem cells into human thymus tissue that had been implanted in mice, allowing them to study the reaction in a living organism.

The engineered stem cells developed into a large population of mature, multifunctional HIV-specific CD8 cells that could specifically target cells containing HIV proteins. The researchers also found that HIV-specific T-cell receptors have to be matched to an individual in much the same way that an organ is matched to a transplant patient.

The next step is to test this strategy in a more advanced model to determine if it would work in the human body, said co-author Jerome A. Zack, UCLA professor of medicine in the division of hematology and oncology and associate director of the UCLA AIDS Institute. The researchers also hope to expand the range of viruses against which this approach could be used.

But the results of the study suggest that this strategy could be an effective weapon in the fight against AIDS and other viral diseases.

"This approach could be used to combat a variety of chronic viral diseases," said Zack, who is also a professor of microbiology, immunology and molecular genetics. "It's like a genetic vaccine."

In addition to Kitchen and Zack, investigators included Michael Bennett, Zoran Galic, Joanne Kim, Qing Xu, Alan Young, Alexis Lieberman, Hwee Ng and Otto Yang, all of UCLA, and Aviva Joseph and Harris Goldstein of the Albert Einstein College of Medicine in New York.

The California Institute for Regenerative Medicine (CIRM) and the UCLA Center for AIDS Research funded this study.

The UCLA AIDS Institute, established in 1992, is a multidisciplinary think tank drawing on the skills of top-flight researchers in the worldwide fight against HIV and AIDS, the first cases of which were reported in 1981 by UCLA physicians. Institute members include researchers in virology and immunology, genetics, cancer, neurology, ophthalmology, epidemiology, social science, public health, nursing, and disease prevention. Their findings have led to advances in treating HIV, as well as other diseases, such as hepatitis B and C, influenza and cancer.

For more news, visit the UCLA Newsroom or follow us on Twitter.

Enrique Rivero | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>