Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA researchers demonstrate that stem cells can be engineered to kill HIV

09.12.2009
Innovative strategy could be effective against other chronic viral diseases
Researchers from the UCLA AIDS Institute and colleagues have for the first time demonstrated that human blood stem cells can be engineered into cells that can target and kill HIV-infected cells — a process that potentially could be used against a range of chronic viral diseases.

The study, published Dec. 7 in the-peer reviewed online journal PLoS ONE, provides proof-of-principle — that is, a demonstration of feasibility — that human stem cells can be engineered into the equivalent of a genetic vaccine.

"We have demonstrated in this proof-of-principle study that this type of approach can be used to engineer the human immune system, particularly the T-cell response, to specifically target HIV-infected cells," said lead investigator Scott G. Kitchen, assistant professor of medicine in the division of hematology and oncology at the David Geffen School of Medicine at UCLA and a member of the UCLA AIDS Institute. "These studies lay the foundation for further therapeutic development that involves restoring damaged or defective immune responses toward a variety of viruses that cause chronic disease, or even different types of tumors."

Taking CD8 cytotoxic T lymphocytes — the "killer" T cells that help fight infection — from an HIV-infected individual, the researchers identified the molecule known as the T-cell receptor, which guides the T cell in recognizing and killing HIV-infected cells. These cells, while able to destroy HIV-infected cells, do not exist in enough quantities to clear the virus from the body. So the researchers cloned the receptor and genetically engineered human blood stem cells, then placed the stem cells into human thymus tissue that had been implanted in mice, allowing them to study the reaction in a living organism.

The engineered stem cells developed into a large population of mature, multifunctional HIV-specific CD8 cells that could specifically target cells containing HIV proteins. The researchers also found that HIV-specific T-cell receptors have to be matched to an individual in much the same way that an organ is matched to a transplant patient.

The next step is to test this strategy in a more advanced model to determine if it would work in the human body, said co-author Jerome A. Zack, UCLA professor of medicine in the division of hematology and oncology and associate director of the UCLA AIDS Institute. The researchers also hope to expand the range of viruses against which this approach could be used.

But the results of the study suggest that this strategy could be an effective weapon in the fight against AIDS and other viral diseases.

"This approach could be used to combat a variety of chronic viral diseases," said Zack, who is also a professor of microbiology, immunology and molecular genetics. "It's like a genetic vaccine."

In addition to Kitchen and Zack, investigators included Michael Bennett, Zoran Galic, Joanne Kim, Qing Xu, Alan Young, Alexis Lieberman, Hwee Ng and Otto Yang, all of UCLA, and Aviva Joseph and Harris Goldstein of the Albert Einstein College of Medicine in New York.

The California Institute for Regenerative Medicine (CIRM) and the UCLA Center for AIDS Research funded this study.

The UCLA AIDS Institute, established in 1992, is a multidisciplinary think tank drawing on the skills of top-flight researchers in the worldwide fight against HIV and AIDS, the first cases of which were reported in 1981 by UCLA physicians. Institute members include researchers in virology and immunology, genetics, cancer, neurology, ophthalmology, epidemiology, social science, public health, nursing, and disease prevention. Their findings have led to advances in treating HIV, as well as other diseases, such as hepatitis B and C, influenza and cancer.

For more news, visit the UCLA Newsroom or follow us on Twitter.

Enrique Rivero | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>