Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA researchers demonstrate that stem cells can be engineered to kill HIV

09.12.2009
Innovative strategy could be effective against other chronic viral diseases
Researchers from the UCLA AIDS Institute and colleagues have for the first time demonstrated that human blood stem cells can be engineered into cells that can target and kill HIV-infected cells — a process that potentially could be used against a range of chronic viral diseases.

The study, published Dec. 7 in the-peer reviewed online journal PLoS ONE, provides proof-of-principle — that is, a demonstration of feasibility — that human stem cells can be engineered into the equivalent of a genetic vaccine.

"We have demonstrated in this proof-of-principle study that this type of approach can be used to engineer the human immune system, particularly the T-cell response, to specifically target HIV-infected cells," said lead investigator Scott G. Kitchen, assistant professor of medicine in the division of hematology and oncology at the David Geffen School of Medicine at UCLA and a member of the UCLA AIDS Institute. "These studies lay the foundation for further therapeutic development that involves restoring damaged or defective immune responses toward a variety of viruses that cause chronic disease, or even different types of tumors."

Taking CD8 cytotoxic T lymphocytes — the "killer" T cells that help fight infection — from an HIV-infected individual, the researchers identified the molecule known as the T-cell receptor, which guides the T cell in recognizing and killing HIV-infected cells. These cells, while able to destroy HIV-infected cells, do not exist in enough quantities to clear the virus from the body. So the researchers cloned the receptor and genetically engineered human blood stem cells, then placed the stem cells into human thymus tissue that had been implanted in mice, allowing them to study the reaction in a living organism.

The engineered stem cells developed into a large population of mature, multifunctional HIV-specific CD8 cells that could specifically target cells containing HIV proteins. The researchers also found that HIV-specific T-cell receptors have to be matched to an individual in much the same way that an organ is matched to a transplant patient.

The next step is to test this strategy in a more advanced model to determine if it would work in the human body, said co-author Jerome A. Zack, UCLA professor of medicine in the division of hematology and oncology and associate director of the UCLA AIDS Institute. The researchers also hope to expand the range of viruses against which this approach could be used.

But the results of the study suggest that this strategy could be an effective weapon in the fight against AIDS and other viral diseases.

"This approach could be used to combat a variety of chronic viral diseases," said Zack, who is also a professor of microbiology, immunology and molecular genetics. "It's like a genetic vaccine."

In addition to Kitchen and Zack, investigators included Michael Bennett, Zoran Galic, Joanne Kim, Qing Xu, Alan Young, Alexis Lieberman, Hwee Ng and Otto Yang, all of UCLA, and Aviva Joseph and Harris Goldstein of the Albert Einstein College of Medicine in New York.

The California Institute for Regenerative Medicine (CIRM) and the UCLA Center for AIDS Research funded this study.

The UCLA AIDS Institute, established in 1992, is a multidisciplinary think tank drawing on the skills of top-flight researchers in the worldwide fight against HIV and AIDS, the first cases of which were reported in 1981 by UCLA physicians. Institute members include researchers in virology and immunology, genetics, cancer, neurology, ophthalmology, epidemiology, social science, public health, nursing, and disease prevention. Their findings have led to advances in treating HIV, as well as other diseases, such as hepatitis B and C, influenza and cancer.

For more news, visit the UCLA Newsroom or follow us on Twitter.

Enrique Rivero | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>