Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA biologists report how whales have changed over 35 million years

31.05.2010
Whales are remarkably diverse, with 84 living species of dramatically different sizes and more than 400 other species that have gone extinct, including some that lived partly on land. Why are there so many whale species, with so much diversity in body size?

To answer that, UCLA evolutionary biologists and a colleague used molecular and computational techniques to look back 35 million years, when the ancestor of all living whales appeared, to analyze the evolutionary tempo of modern whale species and probe how fast whales changed their shape and body size. They have provided the first test of an old idea about why whales show such rich diversity.

"Whales represent the most spectacularly successful invasion of oceans by a mammalian lineage," said Michael Alfaro, UCLA assistant professor of ecology and evolutionary biology, and senior author of the new study, which was published this month in the early online edition of Proceedings of the Royal Society B and will appear at a later date in the journal's print edition. "They are often at the top of the food chain and are major players in whatever ecosystem they are in. They are the biggest animals that have ever lived. Cetaceans (which include whales, as well as dolphins and porpoises) are the mammals that can go to the deepest depths in the oceans.

"Biologists have debated whether some key evolutionary feature early in their history allowed whales to rapidly expand in number and form," Alfaro said. "Sonar, large brains, baleen (a structure found in the largest species for filtering small animals from sea water) and complex sociality have all been suggested as triggers for a diversification, or radiation, of this group that has been assumed to be rapid. However, the tempo — the actual rate of the unfolding of the cetacean radiation — has never been critically examined before. Our study is the first to test the idea that evolution in early whales was explosively fast."

One explanation for whale diversity is simply that they have been accumulating species and evolving differences in shape as a function of time. The more time that goes by, the more cetacean species one would expect, and the more variation in body size one would expect to see in them.

"Instead, what we found is that very early in their history, whales went their separate ways from the standpoint of size, and probably ecology," Alfaro said. "This pattern provides some support for the explosive radiation hypothesis. It is consistent with the idea that some key traits opened up new ways of being 'whale-like' to the earliest ancestors of modern cetaceans, and that these ancestors evolved to fill them. Once these forms became established, they remained."

Species diversification and variations in body size were established early in the evolution of whales, Alfaro and his colleagues report.

Large whales, small whales and medium-sized whales all appeared early in the history of whales, with the large whales eating mostly plankton, small whales eating fish and medium-sized whales eating squid.

"Those differences were probably in place by 25 million years ago at the latest, and for many millions of years, they have not changed very much," said the study's lead author, Graham Slater, a National Science Foundation–funded UCLA postdoctoral scholar in Alfaro's laboratory. "It's as if whales split things up at the beginning and went their separate ways. The distribution of whale body size and diet still corresponds to these early splits."

"The shape of variation that we see in modern whales today is the result of partitioning of body sizes early on in their history," Alfaro said. "Whatever conditions allowed modern whales to persist allowed them to evolve into unique, disparate modes of life, and those niches largely have been maintained throughout most of their history.

"We could have found that the main whale lineages over time each experimented with being large, small and medium-sized and that all the dietary forms appeared throughout their evolution, or that whales started out medium-sized and the largest and smallest ones appeared more recently — but the data show none of that. Instead, we find that the differences today were apparent very early on."

Killer whales are an exception, having become larger over the last 10 million years, Alfaro and Slater said. Killer whales are unusual in that they eat mammals, including other whales.

"If we look at rates of body-size evolution throughout the whale family tree, the rate of body-size evolution in the killer whale is the fastest," Slater said. "It came from the size of a dolphin you would see at SeaWorld about 10 million years ago and grew substantially."

Whales range in size from the largest animal known to have ever existed, the blue whale, which is more than 100 feet long, to small species that are about the size of a dog and can get caught in fishermen's nets, Slater said.

Alfaro and Slater do not find evidence for rapid whale diversification, but extinctions may have made it difficult to detect early rapid diversification.

Whales are about 55 million years old, but the first group of whales to take to water is extinct, Alfaro said. Different hypotheses have been proposed to explain the rapid appearance and diversification of modern whales, which coincided with the extinction of the primitive whales.

Before the extinction of the dinosaurs 65 million years ago, there were large marine reptiles in the oceans that went extinct. When the earliest whales first went into the oceans some 55 million years ago, they had essentially no competitors, Alfaro and Slater noted. These primitive whales ranged in size from several feet to 65 feet long and looked similar to land animals, Slater said. They all fed on fish; the earliest whales did not dive deep down to catch squid.

Alfaro's laboratory uses many techniques, including the analysis of DNA sequences, computational techniques and the fossil record to analytically test ideas about when major groups appear and when they become dominant. He and his research team integrate information from the fossil record with novel computational methods of analysis.

"We are interested in understanding the causes of biodiversity," Alfaro said.

"If we really want to understand species diversity, the number of species in any given group and how the variation in body size came to be, this paper points out that we will need to rely on more of a collaboration between paleontologists and molecular biologists to detect possible changes in the rate at which new species came into existence," Slater said.

The analytical tools for integrating the fossil data with the molecular data are just being developed, said Alfaro, whose research is bridging the divide.

Co-authors on the Proceedings of the Royal Society B study are Samantha Price, a postdoctoral scholar at UC Davis, and Francesco Santini, a UCLA postdoctoral scholar in Alfaro's laboratory.

The research is federally funded by the National Science Foundation (NSF) and by the NSF-funded National Evolutionary Synthesis Center.

Proceedings of the Royal Society B is a leading British journal for biological sciences research.

For more on Alfaro's research, visit his website at http://pandorasboxfish.squarespace.com/.

UCLA is California's largest university, with an enrollment of nearly 38,000 undergraduate and graduate students. The UCLA College of Letters and Science and the university's 11 professional schools feature renowned faculty and offer more than 323 degree programs and majors. UCLA is a national and international leader in the breadth and quality of its academic, research, health care, cultural, continuing education and athletic programs. Five alumni and five faculty have been awarded the Nobel Prize.

For more news, visit the UCLA Newsroom or follow us on Twitter.

Stuart Wolpert | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>