Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA biologists report how whales have changed over 35 million years

31.05.2010
Whales are remarkably diverse, with 84 living species of dramatically different sizes and more than 400 other species that have gone extinct, including some that lived partly on land. Why are there so many whale species, with so much diversity in body size?

To answer that, UCLA evolutionary biologists and a colleague used molecular and computational techniques to look back 35 million years, when the ancestor of all living whales appeared, to analyze the evolutionary tempo of modern whale species and probe how fast whales changed their shape and body size. They have provided the first test of an old idea about why whales show such rich diversity.

"Whales represent the most spectacularly successful invasion of oceans by a mammalian lineage," said Michael Alfaro, UCLA assistant professor of ecology and evolutionary biology, and senior author of the new study, which was published this month in the early online edition of Proceedings of the Royal Society B and will appear at a later date in the journal's print edition. "They are often at the top of the food chain and are major players in whatever ecosystem they are in. They are the biggest animals that have ever lived. Cetaceans (which include whales, as well as dolphins and porpoises) are the mammals that can go to the deepest depths in the oceans.

"Biologists have debated whether some key evolutionary feature early in their history allowed whales to rapidly expand in number and form," Alfaro said. "Sonar, large brains, baleen (a structure found in the largest species for filtering small animals from sea water) and complex sociality have all been suggested as triggers for a diversification, or radiation, of this group that has been assumed to be rapid. However, the tempo — the actual rate of the unfolding of the cetacean radiation — has never been critically examined before. Our study is the first to test the idea that evolution in early whales was explosively fast."

One explanation for whale diversity is simply that they have been accumulating species and evolving differences in shape as a function of time. The more time that goes by, the more cetacean species one would expect, and the more variation in body size one would expect to see in them.

"Instead, what we found is that very early in their history, whales went their separate ways from the standpoint of size, and probably ecology," Alfaro said. "This pattern provides some support for the explosive radiation hypothesis. It is consistent with the idea that some key traits opened up new ways of being 'whale-like' to the earliest ancestors of modern cetaceans, and that these ancestors evolved to fill them. Once these forms became established, they remained."

Species diversification and variations in body size were established early in the evolution of whales, Alfaro and his colleagues report.

Large whales, small whales and medium-sized whales all appeared early in the history of whales, with the large whales eating mostly plankton, small whales eating fish and medium-sized whales eating squid.

"Those differences were probably in place by 25 million years ago at the latest, and for many millions of years, they have not changed very much," said the study's lead author, Graham Slater, a National Science Foundation–funded UCLA postdoctoral scholar in Alfaro's laboratory. "It's as if whales split things up at the beginning and went their separate ways. The distribution of whale body size and diet still corresponds to these early splits."

"The shape of variation that we see in modern whales today is the result of partitioning of body sizes early on in their history," Alfaro said. "Whatever conditions allowed modern whales to persist allowed them to evolve into unique, disparate modes of life, and those niches largely have been maintained throughout most of their history.

"We could have found that the main whale lineages over time each experimented with being large, small and medium-sized and that all the dietary forms appeared throughout their evolution, or that whales started out medium-sized and the largest and smallest ones appeared more recently — but the data show none of that. Instead, we find that the differences today were apparent very early on."

Killer whales are an exception, having become larger over the last 10 million years, Alfaro and Slater said. Killer whales are unusual in that they eat mammals, including other whales.

"If we look at rates of body-size evolution throughout the whale family tree, the rate of body-size evolution in the killer whale is the fastest," Slater said. "It came from the size of a dolphin you would see at SeaWorld about 10 million years ago and grew substantially."

Whales range in size from the largest animal known to have ever existed, the blue whale, which is more than 100 feet long, to small species that are about the size of a dog and can get caught in fishermen's nets, Slater said.

Alfaro and Slater do not find evidence for rapid whale diversification, but extinctions may have made it difficult to detect early rapid diversification.

Whales are about 55 million years old, but the first group of whales to take to water is extinct, Alfaro said. Different hypotheses have been proposed to explain the rapid appearance and diversification of modern whales, which coincided with the extinction of the primitive whales.

Before the extinction of the dinosaurs 65 million years ago, there were large marine reptiles in the oceans that went extinct. When the earliest whales first went into the oceans some 55 million years ago, they had essentially no competitors, Alfaro and Slater noted. These primitive whales ranged in size from several feet to 65 feet long and looked similar to land animals, Slater said. They all fed on fish; the earliest whales did not dive deep down to catch squid.

Alfaro's laboratory uses many techniques, including the analysis of DNA sequences, computational techniques and the fossil record to analytically test ideas about when major groups appear and when they become dominant. He and his research team integrate information from the fossil record with novel computational methods of analysis.

"We are interested in understanding the causes of biodiversity," Alfaro said.

"If we really want to understand species diversity, the number of species in any given group and how the variation in body size came to be, this paper points out that we will need to rely on more of a collaboration between paleontologists and molecular biologists to detect possible changes in the rate at which new species came into existence," Slater said.

The analytical tools for integrating the fossil data with the molecular data are just being developed, said Alfaro, whose research is bridging the divide.

Co-authors on the Proceedings of the Royal Society B study are Samantha Price, a postdoctoral scholar at UC Davis, and Francesco Santini, a UCLA postdoctoral scholar in Alfaro's laboratory.

The research is federally funded by the National Science Foundation (NSF) and by the NSF-funded National Evolutionary Synthesis Center.

Proceedings of the Royal Society B is a leading British journal for biological sciences research.

For more on Alfaro's research, visit his website at http://pandorasboxfish.squarespace.com/.

UCLA is California's largest university, with an enrollment of nearly 38,000 undergraduate and graduate students. The UCLA College of Letters and Science and the university's 11 professional schools feature renowned faculty and offer more than 323 degree programs and majors. UCLA is a national and international leader in the breadth and quality of its academic, research, health care, cultural, continuing education and athletic programs. Five alumni and five faculty have been awarded the Nobel Prize.

For more news, visit the UCLA Newsroom or follow us on Twitter.

Stuart Wolpert | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>