Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA bioengineers discover how particles self-assemble in flowing fluids

14.12.2010
From atomic crystals to spiral galaxies, self-assembly is ubiquitous in nature. In biological processes, self-assembly at the molecular level is particularly prevalent.

Phospholipids, for example, will self-assemble into a bilayer to form a cell membrane, and actin, a protein that supports and shapes a cell's structure, continuously self-assembles and disassembles during cell movement.

Bioengineers at the UCLA Henry Samueli School of Engineering and Applied Science have been exploring a unique phenomenon whereby randomly dispersed microparticles self-assemble into a highly organized structure as they flow through microscale channels.

This self-assembly behavior was unexpected, the researchers said, for such a simple system containing only particles, fluid and a conduit through which these elements flow. The particles formed lattice-like structures due to a unique combination of hydrodynamic interactions.

The research, published online today in the journal Proceedings of the National Academy of Sciences, was led by UCLA postdoctoral scholar Wonhee Lee and UCLA assistant professor of bioengineering Dino Di Carlo.

The research team discovered the mechanism that leads to this self-assembly behavior through a series of careful experiments and numerical simulations. They found that continuous disturbance of the fluid induced by each flowing and rotating particle drives neighboring particles away, while migration of particles to localized streams due to the momentum of the fluid acts to stabilize the spacing between particles at a finite distance. In essence, the combination of repulsion and localization leads to an organized structure.

Once they understood the mechanism, the team developed microchannels that allowed for "tuning" of the spatial frequency of particles within an organized particle train. They found that by simply adding short regions of expanded channel width, the particles could be induced to self-assemble into different structures in a controllable and potentially programmable way.

"Programmable control of flowing microscale particles may be important in opening up new capabilities in biomedicine, materials synthesis and computation, similar to how improved control of flowing electrons has enabled a revolution in computing and communication," Di Carlo said.

For example, controlling the positions of microscale bioparticles, such as cells in flowing channels, is important for the operation of blood analysis and counting diagnostic systems. In addition, improving the uniformity of cell concentrations entering the microscale volume of a print head can enable burgeoning fields such as "tissue printing," in which single cells in a polymer ink are sequentially positioned to form a functional tissue architecture, such as the cylindrical lumen of a blood vessel.

More complete control of lattices of particles may also allow tunable manufacturing of optical or acoustic metamaterials that interact uniquely with light and sound waves based on the arrangement of the embedded particles, the researchers said.

The UCLA Henry Samueli School of Engineering and Applied Science, established in 1945, offers 28 academic and professional degree programs and has an enrollment of almost 5,000 students. The school's distinguished faculty are leading research to address many of the critical challenges of the 21st century, including renewable energy, clean water, health care, wireless sensing and networking, and cyber-security. Ranked among the top 10 engineering schools at public universities nationwide, UCLA Engineering is home to seven multimillion-dollar interdisciplinary research centers in wireless sensor systems, nanoelectronics, nanomedicine, renewable energy, customized computing, and the smart grid, all funded by federal and private agencies.

Matthew Chin | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>