Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCI study finds modified stem cells offer potential pathway to treat Alzheimer's disease

16.04.2014

UC Irvine neurobiologists have found that genetically modified neural stem cells show positive results when transplanted into the brains of mice with the symptoms and pathology of Alzheimer's disease. The pre-clinical trial is published in the journal Stem Cells Research and Therapy, and the approach has been shown to work in two different mouse models.

Alzheimer's disease, one of the most common forms of dementia, is associated with accumulation of the protein amyloid-beta in the brain in the form of plaques. While the search continues for a viable treatment, scientists are now looking into non-pharmaceutical ways to slow onset of this disease.


UC Irvine neurobiologist Mathew Blurton-Jones helped find that increasing the production of the enzyme neprilysin, which breaks down amyloid-beta, led to lower activity in Alzheimer's disease brains.

Credit: UC Irvine

One option being considered is increasing the production of the enzyme neprilysin, which breaks down amyloid-beta, and shows lower activity in the brains of people with Alzheimer's disease. Researchers from UC Irvine investigated the potential of decreasing amyloid-beta by delivering neprilysin to mice brains.

"Studies suggest that neprilysin decreases with age and may therefore influence the risk of Alzheimer's disease," said Mathew Blurton-Jones, an assistant professor of neurobiology & behavior. "If amyloid accumulation is the driving cause of Alzheimer's disease, then therapies that either decrease amyloid-beta production or increase its degradation could be beneficial, especially if they are started early enough."

... more about:
»UCI »dementia »drugs »neprilysin »neural »pathway »proteins

The brain is protected by a system called the blood-brain-barrier that restricts access of cells, proteins, and drugs to the brain. While the blood-brain-barrier is important for brain health, it also makes it challenging to deliver therapeutic proteins or drugs to the brain. To overcome this, the researchers hypothesized that stem cells could act as an effective delivery vehicle. To test this hypothesis the brains of two different mouse models (3xTg-AD and Thy1-APP) were injected with genetically modified neural stem cells that over-expressed neprilysin. Most studies up to now have only looked into a single model, and there has been found to be variation in results between models.

These genetically modified stem cells were found to produce 25-times more neprilysin than control neural stem cells, but were otherwise equivalent to the control cells. The genetically modified and control stem cells were then transplanted into the hippocampus or subiculum of the mice brains – two areas of the brain that are greatly affected by Alzheimer's disease. The mice transplanted with genetically modified stem cells were found to have a significant reduction in amyloid-beta plaques within their brains compared to the controls. The effect remained even one month after stem cell transplantation. This new approach could provide a significant advantage over unmodified neural stem cells because neprilysin-expressing cells could not only promote the growth of brain connections but could also target and reduce amyloid-beta pathology.

Before this can be investigated in humans, more work needs to be done to see if this affects the accumulation of soluble forms of amyloid-beta. Further investigation is also needed to determine whether this new approach improves cognition more than the transplantation of un-modified neural stem cells.

"Every mouse model of Alzheimer's disease is different and develops varying amounts, distribution, and types of amyloid-beta pathology," Blurton-Jones said. "By studying the same question in two independent transgenic models, we can increase our confidence that these results are meaningful and broadly applicable to Alzheimer's disease. But there is clearly a great deal more research needed to determine whether this kind of approach could eventually be translated to the clinic."

###

Frank LaFerla, Joy Davis, Nicholas Castello and Agazaryan of UC Irvine; Brian Spencer, Sarah Michael and Eliezer Masliah of UC San Diego; Jeanne Loring with the Scripps Research Institute, and Franz-Josef Müeller of the Center for Psychiatry in Kiel, Germany, contributed to the study. Blurton-Jones and LaFerla are affiliated with the Institute for Memory Impairments & Neurological Disorders and the Sue & Bill Gross Stem Cell Research Center at UC Irvine.

The study was supported by the California Institute for Regenerative Medicine (grants TR1-01245 and RT1-01108), the Alzheimer's Association, the American Health Assistance Foundation and the Else-Kröner Fresenius Stiftung.

Tom Vasich | Eurek Alert!
Further information:
http://www.uci.edu

Further reports about: UCI dementia drugs neprilysin neural pathway proteins

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>