Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UCI study finds modified stem cells offer potential pathway to treat Alzheimer's disease


UC Irvine neurobiologists have found that genetically modified neural stem cells show positive results when transplanted into the brains of mice with the symptoms and pathology of Alzheimer's disease. The pre-clinical trial is published in the journal Stem Cells Research and Therapy, and the approach has been shown to work in two different mouse models.

Alzheimer's disease, one of the most common forms of dementia, is associated with accumulation of the protein amyloid-beta in the brain in the form of plaques. While the search continues for a viable treatment, scientists are now looking into non-pharmaceutical ways to slow onset of this disease.

UC Irvine neurobiologist Mathew Blurton-Jones helped find that increasing the production of the enzyme neprilysin, which breaks down amyloid-beta, led to lower activity in Alzheimer's disease brains.

Credit: UC Irvine

One option being considered is increasing the production of the enzyme neprilysin, which breaks down amyloid-beta, and shows lower activity in the brains of people with Alzheimer's disease. Researchers from UC Irvine investigated the potential of decreasing amyloid-beta by delivering neprilysin to mice brains.

"Studies suggest that neprilysin decreases with age and may therefore influence the risk of Alzheimer's disease," said Mathew Blurton-Jones, an assistant professor of neurobiology & behavior. "If amyloid accumulation is the driving cause of Alzheimer's disease, then therapies that either decrease amyloid-beta production or increase its degradation could be beneficial, especially if they are started early enough."

... more about:
»UCI »dementia »drugs »neprilysin »neural »pathway »proteins

The brain is protected by a system called the blood-brain-barrier that restricts access of cells, proteins, and drugs to the brain. While the blood-brain-barrier is important for brain health, it also makes it challenging to deliver therapeutic proteins or drugs to the brain. To overcome this, the researchers hypothesized that stem cells could act as an effective delivery vehicle. To test this hypothesis the brains of two different mouse models (3xTg-AD and Thy1-APP) were injected with genetically modified neural stem cells that over-expressed neprilysin. Most studies up to now have only looked into a single model, and there has been found to be variation in results between models.

These genetically modified stem cells were found to produce 25-times more neprilysin than control neural stem cells, but were otherwise equivalent to the control cells. The genetically modified and control stem cells were then transplanted into the hippocampus or subiculum of the mice brains – two areas of the brain that are greatly affected by Alzheimer's disease. The mice transplanted with genetically modified stem cells were found to have a significant reduction in amyloid-beta plaques within their brains compared to the controls. The effect remained even one month after stem cell transplantation. This new approach could provide a significant advantage over unmodified neural stem cells because neprilysin-expressing cells could not only promote the growth of brain connections but could also target and reduce amyloid-beta pathology.

Before this can be investigated in humans, more work needs to be done to see if this affects the accumulation of soluble forms of amyloid-beta. Further investigation is also needed to determine whether this new approach improves cognition more than the transplantation of un-modified neural stem cells.

"Every mouse model of Alzheimer's disease is different and develops varying amounts, distribution, and types of amyloid-beta pathology," Blurton-Jones said. "By studying the same question in two independent transgenic models, we can increase our confidence that these results are meaningful and broadly applicable to Alzheimer's disease. But there is clearly a great deal more research needed to determine whether this kind of approach could eventually be translated to the clinic."


Frank LaFerla, Joy Davis, Nicholas Castello and Agazaryan of UC Irvine; Brian Spencer, Sarah Michael and Eliezer Masliah of UC San Diego; Jeanne Loring with the Scripps Research Institute, and Franz-Josef Müeller of the Center for Psychiatry in Kiel, Germany, contributed to the study. Blurton-Jones and LaFerla are affiliated with the Institute for Memory Impairments & Neurological Disorders and the Sue & Bill Gross Stem Cell Research Center at UC Irvine.

The study was supported by the California Institute for Regenerative Medicine (grants TR1-01245 and RT1-01108), the Alzheimer's Association, the American Health Assistance Foundation and the Else-Kröner Fresenius Stiftung.

Tom Vasich | Eurek Alert!
Further information:

Further reports about: UCI dementia drugs neprilysin neural pathway proteins

More articles from Life Sciences:

nachricht Atom-Sized Craters Make a Catalyst Much More Active
30.11.2015 | SLAC National Accelerator Laboratory

nachricht Hydra Can Modify Its Genetic Program
30.11.2015 | Université de Genève (University of Geneva)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How Cells in the Developing Ear ‘Practice’ Hearing

Before the fluid of the middle ear drains and sound waves penetrate for the first time, the inner ear cells of newborn rodents practice for their big debut. Researchers at Johns Hopkins report they have figured out the molecular chain of events that enables the cells to make “sounds” on their own, essentially “practicing” their ability to process sounds in the world around them.

The researchers, who describe their experiments in the Dec. 3 edition of the journal Cell, show how hair cells in the inner ear can be activated in the absence...

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

All Focus news of the innovation-report >>>



Event News

Urbanisation and migration from rural areas challenging agriculture in Eastern Europe

30.11.2015 | Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Latest News

Teamplay IT solution enables more efficient use of protocols

30.11.2015 | Trade Fair News

Greater efficiency and potentially reduced costs with new MRI applications

30.11.2015 | Trade Fair News

Modular syngo.plaza as a comprehensive solution – even for enterprise radiology

30.11.2015 | Trade Fair News

More VideoLinks >>>