Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCI-Scripps study links cellular motors to memory

26.08.2010
Findings add new dimension to how memories are encoded, suggest new therapeutic targets

Functioning much like gears in a machine, cellular motor proteins are critical to dynamic functions throughout the body, including muscle contraction, cell migration and cellular growth processes. Now, neuroscientists from UC Irvine and the Florida campus of The Scripps Research Institute report that motor proteins also play a critical role in the stabilization of long-term memories. The findings add an unexpected dimension to the story of how memories are encoded and suggest new targets for therapeutic interventions.

UCI's Christopher Rex and Gavin Rumbaugh at Scripps found that myosin II proteins, more commonly studied in muscle contraction and cell migration, are critical for functional brain plasticity and learning. The work builds on a fundamental theory of memory – posed over 25 years ago by UCI neuroscientist Gary Lynch – that memories are the product of structural rearrangements of synapses in the brain.

"We suspected that motor proteins are involved in synaptic plasticity," said Rumbaugh, an assistant professor of neuroscience. "Now that we know that they are, we can begin to investigate how the vast literature on motor proteins from other cell types may generalize to neurons."

Study results appear in the Aug.26 issue of Neuron.

Myosin II motors are one of the most studied protein complexes in the human body. They are best known for interacting with actin filaments to control initiate forces within cellular compartments.

"Cells are constructed like buildings," said Rex, a Kauffman Foundation Fellow in anatomy & neurobiology. "Actin can be thought of as the building's frame, meaning it determines the scale and design of the structure. Myosin II would then be like a crane moving the beams into place. The main difference being that myosin II is poised to both tear down and rebuild the structure with a completely different design at any minute."

A core tenant of contemporary theory is that the sizes and shapes of dendritic spines, small protrusions at the receiving end of chemical transmission at synapses, are critical for determining synaptic strength.

"We know that appropriate patterns of neuronal activity can cause structural changes to these elements spines, now our major focus is to understand how this works," said Lynch, who contributed to the study.

Having discovered that a submicroscopic motor drives synaptic reorganization, the UCI and Scripps research groups believe they are substantially closer to understanding how to selectively enhance memory formation, and thereby treat the memory problems associated with aging, post-traumatic stress, mental retardation and age-related neurodegenerative diseases.

Christine Gall, Eniko Kramar, Lulu Chen and Yousheng Jia of UCI; Cristin Gavin and Courtney Miller of Scripps; Maria Rubio of the University of Alabama, Birmingham; Richard Huganir of Johns Hopkins University School of Medicine; and Nicholas Muzyczka of the University of Florida contributed to this work, which received support from the National Institutes of Health; the University of Alabama, Birmingham; the McKnight Brain Institute; Alabama Health Sciences Foundation; and the Kauffman Foundation.

Tom Vasich | EurekAlert!
Further information:
http://www.uci.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>