Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCI scientists discover ozone-boosting chemical reaction

22.07.2009
Newfound chemistry should be added to atmospheric models, researchers say

Burning of fossil fuels pumps chemicals into the air that react on surfaces such as buildings and roads to create photochemical smog-forming chlorine atoms, UC Irvine scientists report in a new study.

Under extreme circumstances, this previously unknown chemistry could account for up to 40 parts per billion of ozone – nearly half of California's legal limit on outdoor air pollution. This reaction is not included in computer models used to predict air pollution levels and the effectiveness of ozone control strategies that can cost billions of dollars.

Ozone can cause coughing, throat irritation, chest pain and shortness of breath. Exposure to it has been linked to asthma, bronchitis, cardiopulmonary problems and premature death.

"Realistically, this phenomenon probably accounts for much less than 40 parts per billion, but our results show it could be significant. We should be monitoring it and incorporating it into atmospheric models," said Barbara Finlayson-Pitts, Distinguished Professor of Chemistry and lead author of the study. "We still don't really understand important elements of the atmosphere's chemistry."

Study results appear the week of July 20 in the Proceedings of the National Academy of Sciences.

When fossil fuels burn, compounds called nitrogen oxides are generated. Previously, scientists believed these would be eliminated from the atmosphere upon contact with surfaces.

But UCI scientists discovered that when nitrogen oxides combine with hydrochloric acid from airborne sea salt on buildings, roads and other particles in the air, highly reactive chlorine atoms are created that speed up smog formation.

Hydrochloric acid also is found indoors in cleaning products. When it interacts with nitrogen oxides from appliances such as gas stoves, chlorine compounds form that cause unusual chemistry and contribute to corrosion indoors.

The study was undertaken by scientists involved with AirUCI, an Environmental Molecular Sciences Institute funded by the National Science Foundation. UCI's Jonathan Raff conducted experiments; Bosiljka Njegic and Benny Gerber made theoretical predictions; and Wayne Chang and Donald Dabdub did the modeling. Mark Gordon of Iowa State University also helped with theory.

Said Finlayson-Pitts: "This is a great example of how our unique collaborative group can produce some really great science."

About the University of California, Irvine: Founded in 1965, UCI is a top-ranked university dedicated to research, scholarship and community service. Led by Chancellor Michael Drake since 2005, UCI is among the fastest-growing University of California campuses, with more than 27,000 undergraduate and graduate students, 1,100 faculty and 9,200 staff. The top employer in dynamic Orange County, UCI contributes an annual economic impact of $4.2 billion. For more UCI news, visit www.today.uci.edu.

News Radio: UCI maintains on campus an ISDN line for conducting interviews with its faculty and experts. Use of this line is available for a fee to radio news programs/stations that wish to interview UCI faculty and experts. Use of the ISDN line is subject to availability and approval by the university.

UCI maintains an online directory of faculty available as experts to the media. To access, visit www.today.uci.edu/experts. For UCI breaking news, visit www.zotwire.uci.edu.

Jennifer Fitzenberger | EurekAlert!
Further information:
http://www.uci.edu

Further reports about: ISDN Science TV UCI chlorine atom fossil fuels nitrogen oxides

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>