Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCI researchers identify new functional roles on cell surfaces for estrogen

28.05.2014

Study detects hormone receptor's key role in normal organ development and function

A discovery by UC Irvine endocrinologists about the importance of cell surface receptors for estrogen has the potential to change how researchers view the hormone's role in normal organ development and function.


UC Irvine's Dr. Ellis Levin said what this study shows is that both nuclear and cell membrane estrogen receptors are required to collaborate for normal organ development and function.

Credit: UC Irvine

To date, scientists in the field focused on receptors in the cell's nucleus as the primary site for estrogen's effect on gene activity and organ development and function. There has been acknowledgement of similar estrogen receptors outside of the nucleus but much debate as to whether they are important.

To investigate this, Dr. Ellis Levin, professor of medicine at UC Irvine, employed a knock-in mouse that prevented the main estrogen receptor, ER-alpha, from trafficking to the cell membrane.

As a result, Levin found that many organs in the female mice were extremely abnormal, including the mammary gland, uterus, and ovaries. Additionally, pituitary hormone production and fat development were also severely impacted, and the mice were completely infertile.

"Until now, research has taken a narrow view on the importance of estrogen signaling outside the nucleus during development," Levin said. "What this study shows is that both nuclear and cell membrane estrogen receptors are required to collaborate for normal organ development and function."

The implications of this discover move beyond development, Levin added, and can include estrogen's role in causing cancers, or preventing cardiovascular diseases and bone diseases. Current therapeutic efforts propose to target estrogen's ability in the nucleus to turn genes on and off, but Levin notes new approaches should also explore irregularities of functions at cell membrane receptors that affect disease.

"The cell membrane receptor is very sophisticated, impacting the nuclear receptor action and modifying certain proteins and their functions throughout the cells of many organs," Levin said. "By studying how to regulate the partnership between these two receptor sets, and modulate membrane receptor signaling, we can understand how to better treat estrogen-linked diseases and gain benefits in other aspects."

###

Study results appear in Developmental Cell. Ali Pedram of UC Irvine; Mahnaz Razandi with the Veterans Affairs Medical Center of Long Beach, Calif.; Michael Lewis with the Baylor College of Medicine in Houston; and Stephen Hammes with the University of Rochester, contributed to the study, which received support from a Merit Review Award from the Department of Veterans Affairs and the National Institutes of Health (grant 2RO1CA100366).

About the University of California, Irvine: Located in coastal Orange County, near a thriving employment hub in one of the nation's safest cities, UC Irvine was founded in 1965. One of only 62 members of the Association of American Universities, it's ranked first among U.S. universities under 50 years old by the London-based Times Higher Education. The campus has produced three Nobel laureates and is known for its academic achievement, premier research, innovation and anteater mascot. Led by Chancellor Michael Drake since 2005, UC Irvine has more than 28,000 students and offers 192 degree programs. It's Orange County's second-largest employer, contributing $4.3 billion annually to the local economy.

Media access: UC Irvine maintains an online directory of faculty available as experts to the media at today.uci.edu/experts. Radio programs/stations may, for a fee, use an on-campus ISDN line to interview UC Irvine faculty and experts, subject to availability and university approval. For more UC Irvine news, visit news.uci.edu. Additional resources for journalists may be found at communications.uci.edu/for-journalists.

Tom Vasich | Eurek Alert!

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>