Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCI researchers identify new functional roles on cell surfaces for estrogen

28.05.2014

Study detects hormone receptor's key role in normal organ development and function

A discovery by UC Irvine endocrinologists about the importance of cell surface receptors for estrogen has the potential to change how researchers view the hormone's role in normal organ development and function.


UC Irvine's Dr. Ellis Levin said what this study shows is that both nuclear and cell membrane estrogen receptors are required to collaborate for normal organ development and function.

Credit: UC Irvine

To date, scientists in the field focused on receptors in the cell's nucleus as the primary site for estrogen's effect on gene activity and organ development and function. There has been acknowledgement of similar estrogen receptors outside of the nucleus but much debate as to whether they are important.

To investigate this, Dr. Ellis Levin, professor of medicine at UC Irvine, employed a knock-in mouse that prevented the main estrogen receptor, ER-alpha, from trafficking to the cell membrane.

As a result, Levin found that many organs in the female mice were extremely abnormal, including the mammary gland, uterus, and ovaries. Additionally, pituitary hormone production and fat development were also severely impacted, and the mice were completely infertile.

"Until now, research has taken a narrow view on the importance of estrogen signaling outside the nucleus during development," Levin said. "What this study shows is that both nuclear and cell membrane estrogen receptors are required to collaborate for normal organ development and function."

The implications of this discover move beyond development, Levin added, and can include estrogen's role in causing cancers, or preventing cardiovascular diseases and bone diseases. Current therapeutic efforts propose to target estrogen's ability in the nucleus to turn genes on and off, but Levin notes new approaches should also explore irregularities of functions at cell membrane receptors that affect disease.

"The cell membrane receptor is very sophisticated, impacting the nuclear receptor action and modifying certain proteins and their functions throughout the cells of many organs," Levin said. "By studying how to regulate the partnership between these two receptor sets, and modulate membrane receptor signaling, we can understand how to better treat estrogen-linked diseases and gain benefits in other aspects."

###

Study results appear in Developmental Cell. Ali Pedram of UC Irvine; Mahnaz Razandi with the Veterans Affairs Medical Center of Long Beach, Calif.; Michael Lewis with the Baylor College of Medicine in Houston; and Stephen Hammes with the University of Rochester, contributed to the study, which received support from a Merit Review Award from the Department of Veterans Affairs and the National Institutes of Health (grant 2RO1CA100366).

About the University of California, Irvine: Located in coastal Orange County, near a thriving employment hub in one of the nation's safest cities, UC Irvine was founded in 1965. One of only 62 members of the Association of American Universities, it's ranked first among U.S. universities under 50 years old by the London-based Times Higher Education. The campus has produced three Nobel laureates and is known for its academic achievement, premier research, innovation and anteater mascot. Led by Chancellor Michael Drake since 2005, UC Irvine has more than 28,000 students and offers 192 degree programs. It's Orange County's second-largest employer, contributing $4.3 billion annually to the local economy.

Media access: UC Irvine maintains an online directory of faculty available as experts to the media at today.uci.edu/experts. Radio programs/stations may, for a fee, use an on-campus ISDN line to interview UC Irvine faculty and experts, subject to availability and university approval. For more UC Irvine news, visit news.uci.edu. Additional resources for journalists may be found at communications.uci.edu/for-journalists.

Tom Vasich | Eurek Alert!

More articles from Life Sciences:

nachricht Surprising similarity in fly and mouse motion vision
30.07.2015 | Max Planck Institute of Neurobiology, Martinsried

nachricht Intracellular microlasers could allow precise labeling of a trillion individual cells
30.07.2015 | Massachusetts General Hospital

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

Im Focus: Simulations lead to design of near-frictionless material

Argonne scientists used Mira to identify and improve a new mechanism for eliminating friction, which fed into the development of a hybrid material that exhibited superlubricity at the macroscale for the first time. Argonne Leadership Computing Facility (ALCF) researchers helped enable the groundbreaking simulations by overcoming a performance bottleneck that doubled the speed of the team's code.

While reviewing the simulation results of a promising new lubricant material, Argonne researcher Sanket Deshmukh stumbled upon a phenomenon that had never been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Surprising similarity in fly and mouse motion vision

30.07.2015 | Life Sciences

Efficient Infrared Heat Saves Time and Energy in the Manufacture of Motor Vehicle Carpets

30.07.2015 | Trade Fair News

Roentgen prize goes to Dr Eleftherios Goulielmakis

30.07.2015 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>