Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCI researchers identify new functional roles on cell surfaces for estrogen

28.05.2014

Study detects hormone receptor's key role in normal organ development and function

A discovery by UC Irvine endocrinologists about the importance of cell surface receptors for estrogen has the potential to change how researchers view the hormone's role in normal organ development and function.


UC Irvine's Dr. Ellis Levin said what this study shows is that both nuclear and cell membrane estrogen receptors are required to collaborate for normal organ development and function.

Credit: UC Irvine

To date, scientists in the field focused on receptors in the cell's nucleus as the primary site for estrogen's effect on gene activity and organ development and function. There has been acknowledgement of similar estrogen receptors outside of the nucleus but much debate as to whether they are important.

To investigate this, Dr. Ellis Levin, professor of medicine at UC Irvine, employed a knock-in mouse that prevented the main estrogen receptor, ER-alpha, from trafficking to the cell membrane.

As a result, Levin found that many organs in the female mice were extremely abnormal, including the mammary gland, uterus, and ovaries. Additionally, pituitary hormone production and fat development were also severely impacted, and the mice were completely infertile.

"Until now, research has taken a narrow view on the importance of estrogen signaling outside the nucleus during development," Levin said. "What this study shows is that both nuclear and cell membrane estrogen receptors are required to collaborate for normal organ development and function."

The implications of this discover move beyond development, Levin added, and can include estrogen's role in causing cancers, or preventing cardiovascular diseases and bone diseases. Current therapeutic efforts propose to target estrogen's ability in the nucleus to turn genes on and off, but Levin notes new approaches should also explore irregularities of functions at cell membrane receptors that affect disease.

"The cell membrane receptor is very sophisticated, impacting the nuclear receptor action and modifying certain proteins and their functions throughout the cells of many organs," Levin said. "By studying how to regulate the partnership between these two receptor sets, and modulate membrane receptor signaling, we can understand how to better treat estrogen-linked diseases and gain benefits in other aspects."

###

Study results appear in Developmental Cell. Ali Pedram of UC Irvine; Mahnaz Razandi with the Veterans Affairs Medical Center of Long Beach, Calif.; Michael Lewis with the Baylor College of Medicine in Houston; and Stephen Hammes with the University of Rochester, contributed to the study, which received support from a Merit Review Award from the Department of Veterans Affairs and the National Institutes of Health (grant 2RO1CA100366).

About the University of California, Irvine: Located in coastal Orange County, near a thriving employment hub in one of the nation's safest cities, UC Irvine was founded in 1965. One of only 62 members of the Association of American Universities, it's ranked first among U.S. universities under 50 years old by the London-based Times Higher Education. The campus has produced three Nobel laureates and is known for its academic achievement, premier research, innovation and anteater mascot. Led by Chancellor Michael Drake since 2005, UC Irvine has more than 28,000 students and offers 192 degree programs. It's Orange County's second-largest employer, contributing $4.3 billion annually to the local economy.

Media access: UC Irvine maintains an online directory of faculty available as experts to the media at today.uci.edu/experts. Radio programs/stations may, for a fee, use an on-campus ISDN line to interview UC Irvine faculty and experts, subject to availability and university approval. For more UC Irvine news, visit news.uci.edu. Additional resources for journalists may be found at communications.uci.edu/for-journalists.

Tom Vasich | Eurek Alert!

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Safe glide at total engine failure with ELA-inside

27.02.2017 | Information Technology

Fraunhofer IFAM expands its R&D work on Coatings for protection against corrosion and marine growth

27.02.2017 | Materials Sciences

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>