Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCI researchers find sea anemone venom-derived compound effective in anti-obesity studies

28.05.2013
Metabolic activity enhanced by ShK-186 synthetic compound, may work on other obesity induced disease manifestations

Scientists at UC Irvine reported this week that a synthetic compound ShK-186, originally derived from a sea anemone toxin, has been found to enhance metabolic activity and shows potential as a treatment for obesity and insulin resistance.

The findings published the week of May 27 in the Proceedings of the National Academy of Sciences reveal that ShK-186 selectively blocks the activity of a protein that promotes inflammation through the Kv1.3 potassium channel. The study presents the first evidence that the drug candidate – which in March showed positive results in a Phase 1 safety clinical trial – may also work in an anti-obesity capacity.

UC Irvine licensed ShK-186 to Kineta Inc., a Seattle based biotechnology company in 2009; it is the company's lead drug candidate. Kineta is developing this compound to treat autoimmune diseases, such as multiple sclerosis, psoriatic arthritis and lupus. It has also licensed the use of ShK-186 for the treatment of metabolic syndrome and obesity.

Potassium channels regulate cell membrane potential and control a variety of cellular processes. Earlier studies using mice that lack Kv1.3, a potassium channel gene, suggested that Kv1.3 regulated body weight and the basal metabolic rate.

In the present study, Dr. George Chandy and his colleagues evaluated ShK-186 because it has high selectivity for the Kv1.3 target, a favorable pharmacokinetic profile, and meets the qualities of an industry-standard drug. In tests on obese mice that ate a high-fat, high-sugar diet, ShK-186 therapy reduced weight gain, white fat deposits, fatty liver, blood cholesterol and blood sugar by activating calorie-burning brown fat, suppressing inflammation of white fat and augmenting liver function. The compound had no effect on mice that ate a standard chow diet, suggesting that the obesity-causing diet triggers the expression of the Kv1.3 target.

"This is a new twist in a sustained journey of discovery made over the 30 years that charts the course for expeditious translation to humans who suffer from potentially lethal consequences of metabolic syndrome and autoimmune diseases," said Chandy, professor of physiology & biophysics at UC Irvine and a Kineta scientific advisor. "We evaluated ShK-186 in an obesity model because it has high selectivity for the Kv1.3 target, a favorable pharmacokinetic profile, and meets the qualities of an industry-standard drug."

"These data are quite exciting and strongly support the notion that inhibition of the Kv1.3 channel provides a highly effective method for managing obesity and its associated metabolic abnormalities. The results obtained with ShK-186 are consistent with what one would expect to see with a potent inhibitor of this channel. While additional studies are needed, the potential clinical relevance of this work is enormous, since a significant number of people are afflicted with obesity and its associated complications, and no Kv1.3 inhibitor, as a drug candidate for obesity, has reached the clinic until now," said Dr. Gary V. Desir, professor of medicine at Yale University, and an expert on the Kv1.3 channel's role in renal potassium secretion and glucose metabolism. Dr. Desir was not involved with the study.

"Knowing that ShK-186's unique mechanism of action may have broad utilization across multiple therapeutic disciplines, such as autoimmune diseases and now obesity, further adds to the potential of this compound. This study also shows how medical progress can be made through academic and private sector partnerships," added Charles Magness, Ph.D., President and CEO of Kineta.

According to the World Health Organization (March 2013), obesity worldwide has nearly doubled since 1980. In 2008, more than 200 million men and nearly 300 million women, or 11 percent, were obese. Diabetes is expected to affect roughly 300 million humans by 2030 with an economic cost of $260 billion annually.

Sanjeev Kumar Upadhyay, Kristin Eckel-Mahan, M. Reza Mirbolooki, Indra Tjong, Galina Schmunk, Briac Halbout, Brian Pedersen, Emiliana Borrelli, Ping H. Wang, Jogeshwar Mukherjee, and Paolo Sassone-Corsi with UC Irvine; Amanda Koehne and Stephen M. Griffey with UC Davis; and Shawn Iadonato with Kineta contributed to the study, which received support from the National Institutes of Health, a UC Irvine bridge grant, and the Ko Family Foundation.

About Kv1.3 Research at UCI

Dr. Chandy and his UC Irvine colleague Michael Cahalan discovered Kv1.3 in 1984, and since then they have characterized the role of this channel in immune cells. In the 1990s, Chandy and colleagues found that ShK, a peptide from sun anemone venom, blocks Kv1.3 with high potency. They created a synthetic version, ShK-186, and demonstrated its usefulness in treating autoimmune diseases in animal models. ShK-186 is now under pharmaceutical development at Kineta.
About ShK-186

Kineta's lead clinical stage program, ShK-186, is a selective and potent blocker of the voltage-gated Kv1.3 potassium channel. Originally developed from the toxic tentacles of the sun anemone, Stichodactyla helianthus, ShK-186 is a synthetic peptide with a novel mechanism of action that targets autoimmune diseases, including multiple sclerosis, rheumatoid arthritis, and lupus, without broadly suppressing the immune system. ShK-186 was the first Kv1.3-specific inhibitor advanced into the clinic and was well tolerated in a Phase I clinical study that was completed in March 2013.
About UCI

Founded in 1965, UC Irvine is a top-ranked university dedicated to research, scholarship and community service. Led by Chancellor Michael Drake since 2005, UC Irvine is among the most dynamic campuses in the University of California system, with more than 28,000 undergraduate and graduate students, 1,100 faculty and 9,400 staff. Orange County's second-largest employer, UC Irvine contributes an annual economic impact of $4.3 billion. For more UC Irvine news, visit news.uci.edu.

About Kineta, Inc.

Kineta is a Seattle-based privately held biotechnology company specializing in clinical advancement of novel drug candidates derived from leading edge scientific research. Our world class scientists are pioneers in developing life-changing classes of new drugs designed to be more effective and safer than current medicines. Kineta seeks to improve the lives of millions of people suffering from autoimmune and viral diseases and from severe pain. Our progressive business model focuses on targeting unmet medical needs and rapid achievement of important clinical milestones. For more information on Kineta, Inc. visit our website, http://www.Kinetabio.com

Tom Vasich | EurekAlert!
Further information:
http://www.uci.edu
http://www.Kinetabio.com

More articles from Life Sciences:

nachricht Researchers identify how bacterium survives in oxygen-poor environments
22.11.2017 | Columbia University

nachricht Researchers discover specific tumor environment that triggers cells to metastasize
22.11.2017 | University of California - San Diego

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

UCLA engineers use deep learning to reconstruct holograms and improve optical microscopy

22.11.2017 | Medical Engineering

Watching atoms move in hybrid perovskite crystals reveals clues to improving solar cells

22.11.2017 | Materials Sciences

New study points the way to therapy for rare cancer that targets the young

22.11.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>