Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UCI researchers create retina from human embryonic stem cells

Complex tissue structure – a first – offers hope to millions with degenerative eye disorders

UC Irvine scientists have created an eight-layer, early stage retina from human embryonic stem cells, the first three-dimensional tissue structure to be made from stem cells.

It also marks the first step toward the development of transplant-ready retinas to treat eye disorders such as retinitis pigmentosa and macular degeneration that affect millions.

"We made a complex structure consisting of many cell types," said study leader Hans Keirstead of the Reeve-Irvine Research Center and the Sue and Bill Gross Stem Cell Research Center at UCI. "This is a major advance in our quest to treat retinal disease."

In previous studies on spinal cord injury, the Keirstead group originated a method by which human embryonic stem cells could be directed to become specific cell types, a process called differentiation. Results of those studies are leading to the world’s first clinical trial using a stem cell-based therapy for acute spinal cord injury.

In this study, the Keirstead team utilized the differentiation technique to create the multiple cell types necessary for the retina. The greatest challenge, Keirstead said, was in the engineering. To mimic early stage retinal development, the researchers needed to build microscopic gradients for solutions in which to bathe the stem cells to initiate specific differentiation paths.

"Creating this complex tissue is a first for the stem cell field," Keirstead said. "Dr. Gabriel Nistor in our group addressed a really interesting scientific problem with an engineering solution, showing that gradients of solutions can create complex stem cell-based tissues."

The retina is the inside back layer of the eye that records the images a person sees and sends them via the optic nerve from the eye to the brain. Retinal diseases are particularly damaging to sight. More than 10 million Americans suffer from macular degeneration, the leading cause of blindness in people over 55. About 100,000 have retinitis pigmentosa, a progressive, genetic disorder that usually manifests in childhood.

“What’s so exciting with our discovery,” Keirstead said, “is that creating transplantable retinas from stem cells could help millions of people, and we are well on the way.”

The UCI researchers are testing the early-stage retinas in animal models to learn how much they improve vision. Positive results would lead to human clinical trials.

The study appears online in the Journal of Neuroscience Methods. Nistor, Magdalene J. Seiler, Fengrong Yan and David Ferguson contributed to the effort, supported by The Lincy Foundation and private donations to the Keirstead group.

About the University of California, Irvine: Founded in 1965, UCI is a top-ranked university dedicated to research, scholarship and community service. Led by Chancellor Michael Drake since 2005, UCI is among the most dynamic campuses in the University of California system, with nearly 28,000 undergraduate and graduate students, 1,100 faculty and 9,000 staff. Orange County’s largest employer, UCI contributes an annual economic impact of $3.9 billion. For more UCI news, visit

News Radio: UCI maintains on campus an ISDN line for conducting interviews with its faculty and experts. Use of this line is available for a fee to radio news programs/stations that wish to interview UCI faculty and experts. Use of the ISDN line is subject to availability and approval by the university.

Tom Vasich | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>