Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCI researchers create retina from human embryonic stem cells

27.05.2010
Complex tissue structure – a first – offers hope to millions with degenerative eye disorders

UC Irvine scientists have created an eight-layer, early stage retina from human embryonic stem cells, the first three-dimensional tissue structure to be made from stem cells.

It also marks the first step toward the development of transplant-ready retinas to treat eye disorders such as retinitis pigmentosa and macular degeneration that affect millions.

"We made a complex structure consisting of many cell types," said study leader Hans Keirstead of the Reeve-Irvine Research Center and the Sue and Bill Gross Stem Cell Research Center at UCI. "This is a major advance in our quest to treat retinal disease."

In previous studies on spinal cord injury, the Keirstead group originated a method by which human embryonic stem cells could be directed to become specific cell types, a process called differentiation. Results of those studies are leading to the world’s first clinical trial using a stem cell-based therapy for acute spinal cord injury.

In this study, the Keirstead team utilized the differentiation technique to create the multiple cell types necessary for the retina. The greatest challenge, Keirstead said, was in the engineering. To mimic early stage retinal development, the researchers needed to build microscopic gradients for solutions in which to bathe the stem cells to initiate specific differentiation paths.

"Creating this complex tissue is a first for the stem cell field," Keirstead said. "Dr. Gabriel Nistor in our group addressed a really interesting scientific problem with an engineering solution, showing that gradients of solutions can create complex stem cell-based tissues."

The retina is the inside back layer of the eye that records the images a person sees and sends them via the optic nerve from the eye to the brain. Retinal diseases are particularly damaging to sight. More than 10 million Americans suffer from macular degeneration, the leading cause of blindness in people over 55. About 100,000 have retinitis pigmentosa, a progressive, genetic disorder that usually manifests in childhood.

“What’s so exciting with our discovery,” Keirstead said, “is that creating transplantable retinas from stem cells could help millions of people, and we are well on the way.”

The UCI researchers are testing the early-stage retinas in animal models to learn how much they improve vision. Positive results would lead to human clinical trials.

The study appears online in the Journal of Neuroscience Methods. Nistor, Magdalene J. Seiler, Fengrong Yan and David Ferguson contributed to the effort, supported by The Lincy Foundation and private donations to the Keirstead group.

About the University of California, Irvine: Founded in 1965, UCI is a top-ranked university dedicated to research, scholarship and community service. Led by Chancellor Michael Drake since 2005, UCI is among the most dynamic campuses in the University of California system, with nearly 28,000 undergraduate and graduate students, 1,100 faculty and 9,000 staff. Orange County’s largest employer, UCI contributes an annual economic impact of $3.9 billion. For more UCI news, visit www.today.uci.edu.

News Radio: UCI maintains on campus an ISDN line for conducting interviews with its faculty and experts. Use of this line is available for a fee to radio news programs/stations that wish to interview UCI faculty and experts. Use of the ISDN line is subject to availability and approval by the university.

Tom Vasich | EurekAlert!
Further information:
http://www.uci.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>