Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCI researchers create retina from human embryonic stem cells

27.05.2010
Complex tissue structure – a first – offers hope to millions with degenerative eye disorders

UC Irvine scientists have created an eight-layer, early stage retina from human embryonic stem cells, the first three-dimensional tissue structure to be made from stem cells.

It also marks the first step toward the development of transplant-ready retinas to treat eye disorders such as retinitis pigmentosa and macular degeneration that affect millions.

"We made a complex structure consisting of many cell types," said study leader Hans Keirstead of the Reeve-Irvine Research Center and the Sue and Bill Gross Stem Cell Research Center at UCI. "This is a major advance in our quest to treat retinal disease."

In previous studies on spinal cord injury, the Keirstead group originated a method by which human embryonic stem cells could be directed to become specific cell types, a process called differentiation. Results of those studies are leading to the world’s first clinical trial using a stem cell-based therapy for acute spinal cord injury.

In this study, the Keirstead team utilized the differentiation technique to create the multiple cell types necessary for the retina. The greatest challenge, Keirstead said, was in the engineering. To mimic early stage retinal development, the researchers needed to build microscopic gradients for solutions in which to bathe the stem cells to initiate specific differentiation paths.

"Creating this complex tissue is a first for the stem cell field," Keirstead said. "Dr. Gabriel Nistor in our group addressed a really interesting scientific problem with an engineering solution, showing that gradients of solutions can create complex stem cell-based tissues."

The retina is the inside back layer of the eye that records the images a person sees and sends them via the optic nerve from the eye to the brain. Retinal diseases are particularly damaging to sight. More than 10 million Americans suffer from macular degeneration, the leading cause of blindness in people over 55. About 100,000 have retinitis pigmentosa, a progressive, genetic disorder that usually manifests in childhood.

“What’s so exciting with our discovery,” Keirstead said, “is that creating transplantable retinas from stem cells could help millions of people, and we are well on the way.”

The UCI researchers are testing the early-stage retinas in animal models to learn how much they improve vision. Positive results would lead to human clinical trials.

The study appears online in the Journal of Neuroscience Methods. Nistor, Magdalene J. Seiler, Fengrong Yan and David Ferguson contributed to the effort, supported by The Lincy Foundation and private donations to the Keirstead group.

About the University of California, Irvine: Founded in 1965, UCI is a top-ranked university dedicated to research, scholarship and community service. Led by Chancellor Michael Drake since 2005, UCI is among the most dynamic campuses in the University of California system, with nearly 28,000 undergraduate and graduate students, 1,100 faculty and 9,000 staff. Orange County’s largest employer, UCI contributes an annual economic impact of $3.9 billion. For more UCI news, visit www.today.uci.edu.

News Radio: UCI maintains on campus an ISDN line for conducting interviews with its faculty and experts. Use of this line is available for a fee to radio news programs/stations that wish to interview UCI faculty and experts. Use of the ISDN line is subject to availability and approval by the university.

Tom Vasich | EurekAlert!
Further information:
http://www.uci.edu

More articles from Life Sciences:

nachricht BigH1 -- The key histone for male fertility
14.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Guardians of the Gate
14.12.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

Guardians of the Gate

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>