Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCI researchers create mosquitoes incapable of transmitting malaria

13.06.2012
Advance provides genetic options for controlling spread of deadly disease

Mosquitoes bred to be unable to infect people with the malaria parasite are an attractive approach to helping curb one of the world’s most pressing public health issues, according to UC Irvine scientists.

Anthony James and colleagues from UCI and the Pasteur Institute in Paris have produced a model of the Anopheles stephensi mosquito — a major source of malaria in India and the Middle East — that impairs the development of the malaria parasite. These mosquitoes, in turn, cannot transmit the disease through their bites.

“Our group has made significant advances with the creation of transgenic mosquitoes,” said James, a UCI Distinguished Professor of microbiology & molecular genetics and molecular biology & biochemistry. “But this is the first model of a malaria vector with a genetic modification that can potentially exist in wild populations and be transferred through generations without affecting their fitness.”

More than 40 percent of the world’s population lives in areas where there is a risk of contracting malaria. According to the Centers for Disease Control & Prevention, 300 million to 500 million cases of malaria occur each year, and nearly 1 million people die of the disease annually — largely infants, young children and pregnant women, most of them in Africa.

James said one advantage of his group’s method is that it can be applied to the dozens of different mosquito types that harbor and transmit the Plasmodium falciparum parasite, including those in Africa. Study results appear this week in the early online version of the Proceedings of the National Academy of Sciences.

The researchers conceived their approach through mouse studies. Mice infected with the human form of malaria create antibodies that kill the parasite. James’ team exploited the molecular components of this mouse immune-system response and engineered genes that could produce the same response in mosquitoes. In their model, antibodies are released in genetically modified mosquitoes that render the parasite harmless to others.

“We see a complete deletion of the infectious version of the malaria parasite,” said James, a member of the National Academy of Sciences. “This blocking process within the insect that carries malaria can help significantly reduce human sickness and death.”

He and his colleagues have pioneered the creation of genetically altered mosquitoes that limit the transmission of dengue fever, malaria and other vector-borne illnesses.

Alison Isaacs, Nijole Jasinskiene and Mikhail Tretiakov of UCI and Isabelle Thiery, Agnes Zettor and Catherine Bourgouin of the Pasteur Institute contributed to the study, which received support from the National Institute of Allergy & Infectious Diseases — a National Institutes of Health entity — through grant number R37 AI029746.

About the University of California, Irvine: Founded in 1965, UCI is a top-ranked university dedicated to research, scholarship and community service. Led by Chancellor Michael Drake since 2005, UCI is among the most dynamic campuses in the University of California system, with nearly 28,000 undergraduate and graduate students, 1,100 faculty and 9,000 staff. Orange County’s second-largest employer, UCI contributes an annual economic impact of $4 billion. For more UCI news, visit www.today.uci.edu.

News Radio: UCI maintains on campus an ISDN line for conducting interviews with its faculty and experts. Use of this line is available for a fee to radio news programs/stations that wish to interview UCI faculty and experts. Use of the ISDN line is subject to availability and approval by the university.

Media Contact

Tom Vasich
University Communications
949-824-6455
tmvasich@uci.edu

Tom Vasich | EurekAlert!
Further information:
http://www.uci.edu

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>